
Software Testing
Algorithm Design & Software Engineering

February 10, 2016
Stefan Feuerriegel

Today’s Lecture

Objectives

1 Learning debugging strategies in R for finding bugs efficiently

2 Understanding approaches for testing software

3 Formalizing software requirements with the help of unit tests

2Testing

Outline

1 Software Bugs

2 Debugging

3 Software Testing

4 Unit Testing

3Testing

Outline

1 Software Bugs

2 Debugging

3 Software Testing

4 Unit Testing

4Testing: Software Bugs

Software Bugs

A software bug is an error or flaw that causes a program to behave in an
incorrect or unintended way

Well-known examples
I Ariane 5 flight 501 exploded 40 seconds after launch destroying a $1

billion prototype rocket due to a number overflow
→ A 64-bit floating number was converted into a 16-bit integer without
exception handling

I Year 2000 bug in which a worldwide collapse was feared
→ Years were stored as a two-digit number, making it indistinguishable
from 1900

I The 2003 blackout in North America was caused by a race condition
which was not handled

Bugs can have various reasons but different counter measures exist

5Testing: Software Bugs

Programming Bug
Example of a buggy code for calculating nk

Power <- 0
for (i in 0:k) {

power <- power * i
}

Question

I Which of the following appear as software bugs in the above snippet?
I Wrong initialization
I Wrong loop range
I Wrong variable naming
I Wrong variables in mathematical operation
I Overflow

I No Pingo available

6Testing: Software Bugs

Debugging and Software Testing

Tools to find and prevent bugs
1 Debugging

I Locates the source for a programming flaw
I Helps understanding program execution

2 Software testing
I Standardized means for quality and correctness checks
I Sometimes used for specifying requirements
I Assessing the usability of program interfaces

Rule of thumb: debugging consumes about two thirds of the development

7Testing: Software Bugs

Outline

1 Software Bugs

2 Debugging

3 Software Testing

4 Unit Testing

8Testing: Debugging

Debugging

I Debugging is recommended when the return value (e. g. of a unit test)
is erroneous and the error itself is not obvious

I Tools for examining the control flow and values of variables

I Many programming environments support line-by-line execution
debugging, where only one line of code at a time is executed

Debugging strategy

1 Realize that you have a bug

2 Reproduce/generate input values that cause the bug

3 Isolate the flawed component with a binary search

4 Fix it

5 Confirm its successful resolution using the previous input
→ When using unit testing: create an automated test

9Testing: Debugging

Debugging in R

Key debugging tools in R

1 Output variables to the screen
→ e. g. print(...) command or browser() for an interactive
session

2 Asserts (mostly preventative)

3 Exception handling

4 Using built-in commands in R
→ e. g. traceback() for the call stack

5 Interactive debugger inside R Studio

10Testing: Debugging

Debugging with Print Commands

One commonly write certain values to the screen for manual inspection

I Show value of a single variable via print(variable)

I print(...) is necessary to work across all levels of the control flow
I Benefits

I Easy to use
I Quick implementation
I Can narrow down the location of bugs

I Shortcomings
I Manual checks necessary
I Identifies only the approximate location of bugs
I Cannot handle exceptions

I Often combined in practice with a toggle to turn on/off logging
messages

I browser() switches instead to an interactive session at that point

11Testing: Debugging

Debugging with Print Commands
Example: if correct, the loop would print 5, 25 and 125

n <- 5
k <- 3

power <- 0
for (i in 0:k) {

power <- power * i
print(power) # print current value in each iteration

}

[1] 0
[1] 0
[1] 0
[1] 0

print(power) # should be 5^3 = 125

[1] 0

12Testing: Debugging

Asserts

Trigger a specific message when a condition is not satisfied

I Signal an error if something is wrong (“fail fast”)
I Syntax options

1 stop(...)
2 stopifnot(...)
3 Package assertthat

I Benefits
I Makes code and errors understandable if something unexpected occurs
I Easier debugging of functions for other users

I Shortcomings
I Does not guarantee error-free functions
I Does not avoid bugs directly

I Often used to check type and range of input to functions

13Testing: Debugging

Asserts
Example that checks input types and range

cube_root <- function(x) {
if (class(x) != "numeric") {
stop("Wrong variable class: not a single number")

}
if (x < 0) {
stop("Wrong range: cannot be less than 0")

}
if (!is.finite(x)) {

stop("Wrong range: cannot be infinite or NA")
}
return(x^(1/3))

}
cube_root("error") # should throw an error

Error in cube_root("error"): Wrong variable class: not a single number

cube_root(-5) # should throw an error

Error in cube_root(-5): Wrong range: cannot be less than 0

cube_root(NA) # should throw an error

Error in cube_root(NA): Wrong variable class: not a single number

cube_root(125) # 5

[1] 5

14Testing: Debugging

Exception Handling

Exception handling (or condition handling) allows program to react upon
(un)expected failures

I Functions can throw exceptions when an error occurs

I Code can then handle the exception and react upon it

I Syntax options: try(...) and tryCatch(...)
I Benefits

I Program execution can continue even when errors are present
I Exception can trigger a designated response
I Helpful technique to interact with packages legacy code

I Shortcomings
I Helps not to locate unexpected bugs

15Testing: Debugging

Exception Handling in R

I try(...) ignores an error

f.unhandled <- function(x) {
sqrt(x)
return(x)

}
no return value
f.unhandled("string")

Error in sqrt(x): non-numeric
argument to mathematical function

f.try <- function(x) {
try(sqrt(x))
return(x)

}
skips error
f.try("string")

[1] "string"

I Returns an object of try-error in case of an exception

result <- try(2 + 3)
class(result)

[1] "numeric"

inherits(result, "try-error")

[1] FALSE

result

[1] 5

error <- try("a" + "b")
class(error)

[1] "try-error"

inherits(error, "try-error")

[1] TRUE

16Testing: Debugging

Exception Handling in R
I tryCatch(...) can react differently upon errors, warnings,

messages, etc. using handlers
handle_type <- function(expr) {

tryCatch(expr,
error=function(e) "error",
warning=function(e) "warning",
message=function(e) "message"

)
}
handle_type(stop("..."))

[1] "error"

handle_type(warning("..."))

[1] "warning"

handle_type(message("..."))

[1] "message"

handle_type(10) # otherwise returns value of input

[1] 10

I R allows to define custom exception types

17Testing: Debugging

Call Stack

The call stack shows the hierarchy of function calls leading to the error
I Benefits

I Shows location of the error
I Especially helpful with several, nested functions

I Shortcomings
I Shows where an error occurred but not why
I Works only for exceptions

I R Studio usage: click “Show Traceback” in R Studio

18Testing: Debugging

Example: Call Stack in R

I Code including bug

f <- function(x) g(x)
g <- function(x) x + "string"
f(0)

I Fired error message

Error in x + "string": non-numeric argument to binary
operator

I Display call stack manually with traceback()

traceback()

2: f(0)
1: g(x)

First entry is the hierarchy level, followed by function name and
possibly file name and line number

19Testing: Debugging

Interactive Debugger in R Studio

Interactive debugging in R Studio allows line-by-line execution
I Benefits

I Helps finding the location of an error
I Makes it possible to track changes in the values of all variables

I Shortcomings
I Can be still time consuming to find location of a bug

I “Rerun with Debug”: repeats execution but stops at the exception

I R Studio toolbar

I Requirements of R Studio: project, file saved, sourced, etc. → see
further readings or website for details

20Testing: Debugging

Interactive Debugger in R Studio

I executes the next statement of up to the current hierarchy level

I steps into the next function including a deeper hierarchy level

I finishes current loop or function

I continues execution to the end of the script

I stops debugging and switches to the coding stage

I Breakpoint stops the execution at a pre-defined point for manual
inspection

→ can be conditional together with an if

21Testing: Debugging

Debugging
Example: approximate the square root using Newton’s method

n <- 2
x <- 1
x.old <- NA
while ((x - x.old) >= 10e-5 || is.na(x.old)) {

x.old <- x
x <- 1/2 * (x + n/x)

}
x # should be 1.414214, i.e. large error

[1] 1.416667

Question

I Which debugging strategy would you personally prefer?
I Output variables
I Asserts
I Exception handling
I Insights from call stack
I Interactive debugger inside R Studio

I No Pingo available
22Testing: Debugging

Outline

1 Software Bugs

2 Debugging

3 Software Testing

4 Unit Testing

23Testing: Software Testing

Software Testing

I Software testing studies the quality of a software

I Provides standardized means and tailored tools for testing
→ Opposed to simple “run-and-see”

Reasons
I External proof-of-concept

I Internal quality assurance

I Specifying the requirements and functionality of components

Testing Scope
I Functional (as specified in the requirements)
I Non-functional

I Usability, graphical appearance
I Scalability, performance
I Compatibility, portability
I Reliability

24Testing: Software Testing

Testing Perspectives

Testing objectives vary dependent on the perspective

End-users
I Output must match

expectations

I Internal code and structure
not of relevance

I Mostly black box testing

Developers
I Program must handle all

input correctly

I Intermediate values in the
code must be correct

I Program needs to work
efficiently

I Mostly white box testing
Testing can be

I Static: proofreading, reviews, verification, etc.

I Dynamic: automated unit tests, etc.

25Testing: Software Testing

Black Box and White Box Testing

Software testing divided according to the knowledge of a tester

Black box testing

I Tests functionality without
any knowledge of the
implementation

I Observes the output for a
given input

I Testers know what is
supposed to come out but
not how

White box testing

I Checks internal
implementation of a program

I Tests are designed
withknowledge of the code

I Usually automated, e. g. by
unit tests

26Testing: Software Testing

Levels of Testing

I Different level of testing checks the properties of a software

I A designated testing level corresponds to each stage of the waterfall
model

I New approach is named V model

Acceptance
Testing

User
Requirements

Coding

Physical
Design

Program
 Unit Design

Logical
Design

Unit
Testing

Integration
Testing

System
Testing

Verifies

Verifies

Verifies

Verifies

27Testing: Software Testing

Acceptance and System Testing

Acceptance Testing
I Related to usability testing

I Concerns the interaction with users

I Tests e. g. the ease-to-use of the user interface

System Testing
I Performs end-to-end tests of the integrated system

I Tests mainly that requirements are met

28Testing: Software Testing

Integration Testing

I Ensure the correct interoperability of components

I Thus tests interfaces and interaction above unit testing

I Above unit testing on the scale level, as interaction is tested

I Common in large-scale software projects
→Example: Windows 7 was deployed daily on 1000+ different PCs to
run automated tests

Regression Testing
I Aims is to find bugs after large code changes

I Checks for unintended consequences of changes
I Examples

I Lost functionality
I Depreciated features
I Old bugs that reappeared

29Testing: Software Testing

Unit Testing

Objectives
I Unit tests focus on the lowest level of a program

I Validates small code segments, e. g. a function or method
I Main use cases

I Ensure that code matches specification
I Detect bugs from changing or adding new code

Characteristics
I Each unit test usually consists of multiple simple comparisons

I Focus on boundary values of parameters

I Quick runtimes that allow automated checks after each code change

I Common quality metric is code coverage

30Testing: Software Testing

Outline

1 Software Bugs

2 Debugging

3 Software Testing

4 Unit Testing

31Testing: Unit Testing

Unit Testing

I Refers to testing the functionality of a specific fragment

I Usually at function or class level

I Tests against pre-defined, expected outcomes

Reasons for using unit testing
I Fewer bugs because automated tests check functionality

I Designing of unit tests enforces better code structure

I Tracks progress of development

I Code becomes more robust since unit tests also control for side effects

I Tests help to document functionality

32Testing: Unit Testing

Unit Testing in R

Package RUnit
I Designed for unit testing

I Checks values and exceptions

I Generates text or HTML reports

I Limitation: no test stubs

Package testthat
I Supports unit testing, test stubs

and test suites

I Generates text output, arbitrarily
verbose

I Tests can be automated to run
after each file change

I Intended for package
development but also works well
with simple R scripts

I Similar concepts and usage for both packages

I Code coverage measured for both through additional packages

33Testing: Unit Testing

Test Organization

Tests are organized hierarchically

I Expectation verifies a single assumption
→ Checks that given input values return the desired results

I Tests (or units) group several expectations
→ Tests a single function for a range of input values (including
boundaries such as NA)

I Suites group several tests
→ In R, this is a simple file
→ For object oriented code, this tests a full class

34Testing: Unit Testing

Unit Testing in R

High-level procedure

1 Store function f subject to testing in f.R

2 Source that file via source("f.R")

3 Create file test.f.R that contains the tests
4 Write test, e. g.

test_that("Short description", {
expect_equal(sum(1, 2, 3), 6)

})

where the description should continue “Test that . . . ”

5 Load package testthat

6 Run file via test_file("test.f.R"), or all files in a directory
via test_dir(...)

7 Assess results, i. e. failed tests

35Testing: Unit Testing

Unit Testing in R
Example calculates roots of quadratic equation x2 +px +q

roots_quadratic_eqn <- function(p, q)
{
if (!is.numeric(p) || !is.numeric(q)) {

stop("Wrong input format: expects numeric value")
}
return(c(-p/2 + sqrt((p/2)^2 - q),

-p/2 - sqrt((p/2)^2 - q)))
}

36Testing: Unit Testing

Unit Testing in R

I Load testthat package
library(testthat)

I Simple test file test.roots_quadratic_eqn.R

test_that("Roots are numeric and correct", {
r <- roots_quadratic_eqn(8, 7)
expect_is(r, "numeric")
expect_equal(length(r), 2)
expect_equal(r, c(5, 6))

})

I Run tests to compare expected and real results of failed tests
test_file("test.roots_quadratic_equation.R")

..1
1. Failure (at test.roots_quadratic_equation.R#5): Roots are numeric and correct
r not equal to c(5, 6)
2/2 mismatches (average diff: 9.5).
First 2:
pos x y diff
1 -1 5 -6
2 -7 6 -13

37Testing: Unit Testing

Verifying Expectations

I Syntax expect_*(actual, expected) ensures expectations

I First argument is the actual, the second the expected result

Built-in expectation comparisons
I expect_equal checks for equality within numerical tolerance

expect_equal(1, 1) # pass
expect_equal(1, 1 + 1e-8) # pass
expect_equal(1, 5) # expectation fails

Error: 1 not equal to 5
1 - 5 == -4

I expect_identical checks for exact equality
expect_identical(1, 1) # pass
expect_identical(1, 1 + 1e-8) # expectation fails

Error: 1 is not identical to 1 + 1e-08. Differences:
Objects equal but not identical

38Testing: Unit Testing

Verifying Expectations

I expect_true and expect_true check for TRUE and FALSE
value
expect_true(TRUE) # pass
expect_true(FALSE) # expectation fails

Error: FALSE isn’t true

expect_true("str") # expectation fails

Error: "str" isn’t true

I expect_is checks the class type
model <- lm(c(6:10) ~ c(1:5))
expect_is(model, "lm") # pass
expect_is(model, "class") # expectation fails

Error: model inherits from lm not class

I expect_error checks that an error is thrown
expect_error(0 + "str") # pass since error was expected
expect_error(3 + 4) # expectation fails because of no error

Error: 3 + 4 code raised an error

39Testing: Unit Testing

Stubs and Mocks

I Some functions cannot be be executed for testing purposes, e. g.
I Functions that access different systems, e. g. online authentication
I Persistent manipulations of databases
I Hardware controlling functions, e. g. a robot arm
I Execution of financial transactions, etc.
I Functions dependency of non-existent code

I Solution: stubs and mocks

40Testing: Unit Testing

Stubs and Mocks

Stubs
I The underlying operation is replaced by a stub for testing

I Stubs can perform primitive operations but usually return only a value

Mocks
I In OOP, replacements for full objects are called mock

I Mocks additionally check if methods were called as expected

Class under test Stub

Test

Communicate

Assert

Class under test Mock

Test

Communicate

Assert

41Testing: Unit Testing

Mocks in R

Example
I calculate_gross(p) calculates gross price for a VAT of 19 %

calculate_gross <- function(net_price) {
authenticate() # External function call

if (!is.numeric(net_price)) {
stop("Input type is not numeric")

}
return(round(net_price*1.19, digits=2))

}

I Calls external service authenticate() to verify the access
authenticate <- function() {

library(RCurl)
if (getURI("127.0.0.1") != "SUCCESS") {
stop("Not authenticated")

}
}

I calculate_gross(p) can be tested without authentication
→ Need a stub to skip or mimic functionality of authenticate()

42Testing: Unit Testing

Stubs in R

I Once can redirect the call authenticate() to a stub instead
I In this example, the stub skips authentication

authenticate_stub <- function() {
print("Authentication omitted for testing")

}

I Test file test.calculate_gross.R

test_that('Gross calculation works correctly', {
with_mock(authenticate = function() {

print("Authentication omitted for testing")
},
expect_equal(calculate_gross(100), 119),
expect_equal(calculate_gross(70), 83.30),
expect_error(calculate_gross("str")),
expect_error(calculate_gross("100.50"))

)
})

Note: the name with_mock(...) is misleading since this is not a
mock but a stub

43Testing: Unit Testing

Stubs in R

I Run tests with mock
test_file("test.calculate_gross.R")

[1] "Authentication omitted for testing"
.[1] "Authentication omitted for testing"
.[1] "Authentication omitted for testing"
.[1] "Authentication omitted for testing"
.
DONE

I Note: authenticate(p) needs to exist for with_mock(...) to
work

44Testing: Unit Testing

Code Coverage

I Code coverage shows to which lines of code are tested

I Helps identifying non-tested code regions

I Usually measures coverage as ratio, e. g. 60 % of all lines, functions,
etc.
→ Warning: a high coverage does not guarantee thorough testing

I As a recommendation, focus especially on the boundaries of
parameter ranges (0, NA, Inf, etc.) to identify unhandled problems

R package covr

I Supports only coverage when testing full packages
→ Workaround is to create a dummy package

45Testing: Unit Testing

Code Coverage in R
I Load devtools and covr

library(devtools) # for creating packages
library(covr) # for code coverage

I Create empty package testcovr in the current working directory
create("testcovr") # create default structure
use_testthat("testcovr") # append testing infrastructure

I Create sample absolute_value.R in folder testcovr/R/
absolute_value <- function(x) {

if (x >= 0) {
return(x)

} else {
return(-x)

}
}

I Create test test.absolute_value.R in folder
testcovr/tests/testthat/
test_that("absolute value is correct", {

expect_is(absolute_value(-3), "numeric")
expect_equal(absolute_value(-3), 3)

}) 46Testing: Unit Testing

Code Coverage in R

I Run all test of package testcovr
test("testcovr")

Loading testcovr
Testing testcovr

..
DONE

I Analyze code coverage of package testcovr
package_coverage("testcovr")

testcovr Test Coverage: 66.67%
R\absolute_value.R: 66.67%

I Show locations of zero coverage
zero_coverage(package_coverage("testcovr"))

filename functions first_line value
2 R\\absolute_value.R absolute_value 3 0

47Testing: Unit Testing

Code Coverage in R
I Visual reports on code coverage via shiny

s <- package_coverage("testcovr")
shine(s)

I Overall report

I Coverage line-by-line

48Testing: Unit Testing

Summary

Debugging
I Locates bugs or to understand code

I Tools: screen output, asserts, exceptions, interactive debuggers (for
call stacks and breakpoints)

Software testing
I Software testing measures quality

I Functional vs. non-functional scope

I Static vs. dynamic testing

I White box vs. black box testing

I V model: acceptance, system, integration and unit testing
I Unit tests

I Performs automated checks of expectations
I Measures code coverage
I Use stubs/mocks to entangle dependencies

49Testing: Wrap-Up

Further Readings: Debugging

I Advanced R (CRC Press, 2014, by Wickham)
Debugging, condition handling, and defensive programmig
Section 9, pp. 149–171
http://adv-r.had.co.nz/Exceptions-Debugging.html

I Debugging with R Studio
https://support.rstudio.com/hc/en-us/articles/

205612627-Debugging-with-RStudio

I Breakpoints in R Studio
http://www.rstudio.com/ide/docs/debugging/

breakpoint-troubleshooting

I assertthat package documentation at CRAN
https://cran.r-project.org/web/packages/assertthat/

assertthat.pdf

50Testing: Wrap-Up

http://adv-r.had.co.nz/Exceptions-Debugging.html
https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio
https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio
http://www.rstudio.com/ide/docs/debugging/breakpoint-troubleshooting
http://www.rstudio.com/ide/docs/debugging/breakpoint-troubleshooting
https://cran.r-project.org/web/packages/assertthat/assertthat.pdf
https://cran.r-project.org/web/packages/assertthat/assertthat.pdf

Further Readings: Unit Testing

I Testing (by Wickham)
Book chapter: http://r-pkgs.had.co.nz/tests.html

Slides: http:

//courses.had.co.nz/11-devtools/slides/7-testing.pdf

I testthat: Get Started with TestingR Journal, vol. 3 (1), 2011, by
Wickham
https://journal.r-project.org/archive/2011-1/RJournal_

2011-1_Wickham.pdf

I testthat package documentation at CRAN: https:
//cran.r-project.org/web/packages/testthat/testthat.pdf

I Mocks Aren’t Stubs (2007, by Fowler)
http://martinfowler.com/articles/mocksArentStubs.html

I Specialized materials for high-level programming languages, e. g.
The Art of Unit Testing (Manning, by Osherove)

I covr package documentation at CRAN
https://cran.r-project.org/web/packages/covr/covr.pdf 51Testing: Wrap-Up

http://r-pkgs.had.co.nz/tests.html
http://courses.had.co.nz/11-devtools/slides/7-testing.pdf
http://courses.had.co.nz/11-devtools/slides/7-testing.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://cran.r-project.org/web/packages/testthat/testthat.pdf
https://cran.r-project.org/web/packages/testthat/testthat.pdf
http://martinfowler.com/articles/mocksArentStubs.html
https://cran.r-project.org/web/packages/covr/covr.pdf

	Software Bugs
	Debugging
	Software Testing
	Unit Testing

