
Advanced Plotting with ggplot2
Algorithm Design & Software Engineering

November 13, 2016
Stefan Feuerriegel

Today’s Lecture

Objectives

1 Distinguishing different types of plots and their purpose

2 Learning the grammar of graphics

3 Create high-quality plots with ggplot2

2Plotting

Outline

1 Introduction

2 Plot Types (Geometries)

3 Plot Appearance

4 Advanced Usage

5 Wrap-Up

3Plotting

Outline

1 Introduction

2 Plot Types (Geometries)

3 Plot Appearance

4 Advanced Usage

5 Wrap-Up

4Plotting: Introduction

Motivation

Why plotting?
I Visualizations makes it easier to understand and explore data

I Common types of plots: bar chart, histogram, line plot, scatter plot, box
plot, pirate plot, . . .

Plotting with ggplot2 in R
I Built-in routines cover most types, yet the have no consistent interface

and limited flexibility
I Package ggplot2 is a powerful alternative

I Abstract language that is flexible, simple and user-friendly
I Nice aesthetics by default
I Themes for common look-and-feel

I “gg” stands for “grammar of graphics”

I Limited to 2D plots (3D plots not supported)

I Commonly used by New York Times, Economics, . . .

5Plotting: Introduction

Example with ggplot2

I Load package

library(ggplot2)

I Create sample data

line_data <- data.frame(year=1900:2000, price=1:101)

I Visualize data frame as line plot

ggplot(line_data, aes(x=year, y=price)) +
geom_line()

0

25

50

75

100

1900 1925 1950 1975 2000
year

pr
ic

e

6Plotting: Introduction

Calls to ggplot2
General format

ggplot(data, aes(x=variable_x, y=variable_y)) +
geom_*() +
additional_modifications()

I ggplot() expects a data frame (not: matrix) as a first input, followed
by the aesthetics that map variables by name onto axes

I Building blocks are concatenated via +
I ∗ is any of the supported plot types
I The geom_*() can overwrite previous aesthetics

I ggplot(data) +
geom_line(aes(x=variable_x, y=variable_y1)) +
geom_line(aes(x=variable_x, y=variable_y2))

I ggplot(data, aes(x=variable_x)) +
geom_line(aes(y=variable_y1)) +
geom_line(aes(y=variable_y2))

7Plotting: Introduction

Terminology

I Data: underlying information to be visualized

I Aesthetics: controls the color/shape/. . . of observations and which
variables go on the x- and y-axis

I Geometry: geometric objects in the plot; e. g. points, lines, bars,
polygons, . . .

I Layers: individual plots, i. e. calls to geom_*()

I Facets: creates panels of sub-plots

I Scales: sets look-and-feel of axes

I Themes: overall color palette and layout of plot

I Statistics: transformations of the data before display
I Legends: appearance and position of legend

I Each layer consists of data and aesthetics, plus additional
customizations

I A plot can have a one or an arbitrary number of layers

8Plotting: Introduction

Aesthetics

I Aesthetics aes(...) set “what you see”
I Variables which go on x- and y-axis
I Color of outer border
I Fill color of inside area
I Shape of points
I Line type
I Size of points and lines
I Grouping of values

I Expect a column name representing the variable

I Short form by aes(x, y) where identifiers x= and y= are omitted

9Plotting: Introduction

Wide vs. Long Data

Data format
I Wide data: multiple measurements for the same subject, each in a

different column

I Long data: subjects have multiple rows, each with one measurement

Example

Wide format
Company Sales Drinks Sales Food

A 300 400
B 200 100
C 50 0

⇒

Long format
Company Category Sales

A Drinks 300
A Food 400
B Drinks 200
B Food 100
C Drinks 50
C Food 0

Note: ggplot2 requires data in long format

10Plotting: Introduction

Conversion Between Long and Wide Data

I Prepare sample data

d_wide <- data.frame(Company = c("A", "B", "C"),
SalesDrinks = c(300, 200, 50),
SalesFood = c(400, 100, 0))

I Load necessary package reshape2

library(reshape2)

I Call function melt(data_wide, id.vars=v) to convert wide
data into a long format where v identifies the subject

melt(d_wide, id.vars="Company")

Company variable value
1 A SalesDrinks 300
2 B SalesDrinks 200
3 C SalesDrinks 50
4 A SalesFood 400
5 B SalesFood 100
6 C SalesFood 0

11Plotting: Introduction

Outline

1 Introduction

2 Plot Types (Geometries)

3 Plot Appearance

4 Advanced Usage

5 Wrap-Up

12Plotting: Geometries

Plot Types

I ggplot2 ships the following geometric objects (geoms) amongst others

I Function names start with geom_*()

Two variables
I Scatter plot (also named point plot) geom_point()

I Line plot geom_line()

I Area chart geom_area()

One variable (discrete)
I Bar chart geom_bar()

One variable (continuous)
I Histogram geom_histogram()

I Boxplot geom_boxplot()

I Density plot geom_density()
13Plotting: Geometries

Scatter Plot

I A scatter plot displays each observation as a geometric point
I Optional arguments: alpha (transparency), size, color, shape

points <- data.frame(x=rnorm(20), y=rnorm(20))
p1 <- ggplot(points, aes(x, y)) +
geom_point()

p2 <- ggplot(points, aes(x, y)) +
geom_point(alpha=0.4, color="darkblue")

p1

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2
x

y

p2

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2
x

y

14Plotting: Geometries

Point Shapes

I Argument shape accepts different values

●

●

●

●

●

●

●

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

22

21

24

23

20

I Shapes 21–24 distinguish two colors:
I A border color (argument: color)
I A fill color (argument: fill)

15Plotting: Geometries

Scatter Plot

I Aesthetics can also change size, shape or color based on variables

ggplot(mpg, aes(x=displ, y=hwy)) +
geom_point(aes(size=cyl, fill=drv), shape=21)

●●

●
●

●●●●
●

●
●

●●●●●●
●

●
●
●

●●

●
●

●● ●
●
●● ●

●

●

●
●
●

● ●
●●
●●

●

●●
●●
●●●● ●●

●
●●

● ●
●
● ● ●

●●
●
●●●
●

●● ●●● ●●●
●
●
● ●●●● ●●● ●●

●●●
●

●●●● ●

●
●●

●

●

●

●●

●

●
●

●
●

●●
●

●

●
●
●

●●●
●

●●
●
●

● ●
●●

●●
● ●●●●

● ●●

●

●

●
●

●●●● ●

●●
●

●

● ●●
●

●●
●

●

●
●

●

●● ●●
●

●

●

●

●●

●
●

●
●

●

●

●●

●●
●●

●

●●

●●●
●

●

●

●

●

●
●

●●

●

●
● ●

●

●

●

●●

●

●

●

●

●● ●●

●●

●

●

●

●

●●
●●

●
●

●● ●

20

30

40

2 3 4 5 6 7
displ

hw
y

●

●

●

4

f

r

cyl
●

●

●

●
●

4

5

6

7

8

16Plotting: Geometries

Line Plot

I Line plot displays points as a connected line

x <- seq(0, 2*pi, by=0.01)
data_sin_cos <- data.frame(x=x, sin=sin(x), cos=cos(x))

ggplot(data_sin_cos, aes(x)) +
geom_line(aes(y=sin)) +
geom_line(aes(y=cos), color="darkred")

−1.0

−0.5

0.0

0.5

1.0

0 2 4 6
x

si
n

I Optional arguments: color, linetype, size, group

17Plotting: Geometries

Line Types

I Argument linetype picks a line type based the following identifiers

solid

dashed

dotted

dotdash

longdash

twodash

18Plotting: Geometries

Line Plot

I Long data allows for efficient grouping and simpler plots
I Argument group denotes the variable with the group membership
I Alternative is to use color for different colors

data_lines2 <- data.frame(x=c(1:10, 1:10),
var=c(rep("y1", 10), rep("y2", 10)),
y=c(rep(5, 10), 11:20))

ggplot(data_lines2) +
geom_line(aes(x=x, y=y, group=var))

5

10

15

20

2.5 5.0 7.5 10.0
x

y

19Plotting: Geometries

Line Plot

I Grouping can occur through all aesthetics
I Common is to use color for different colors

data_lines2 <- data.frame(x=c(1:10, 1:10),
var=c(rep("y1", 10), rep("y2", 10)),
y=c(rep(5, 10), 11:20))

ggplot(data_lines2) +
geom_line(aes(x=x, y=y, color=var))

5

10

15

20

2.5 5.0 7.5 10.0
x

y

var

y1

y2

20Plotting: Geometries

Area Chart

I Similar to a line plot, but the area is filled in color

I Individual areas are mapped via group and colored via fill
I position="stack" stacks the areas on top of each other

ggplot(data_lines2) +
geom_area(aes(x=x, y=y, fill=var, group=var),

position="stack")

0

5

10

15

20

25

2.5 5.0 7.5 10.0
x

y

var

y1

y2

21Plotting: Geometries

Area Chart

I Argument position="fill" shows relative values for each group
out of 100 %

ggplot(data_lines2) +
geom_area(aes(x=x, y=y, fill=var, group=var),

position="fill")

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
x

y

var

y1

y2

22Plotting: Geometries

Bar Chart

I Bar chart compares values, counts and statistics among categories

I The x-axis usually displays the discrete categories
I The y-axis depicts the given value (stat="identity") or also

transformed statistics

grades_freq <- data.frame(grade=c("good", "fair", "bad"),
freq=c(3, 2, 5))

ggplot(grades_freq) +
geom_bar(aes(grade, freq), stat="identity")

0
1
2
3
4
5

bad fair good
grade

fr
eq

I Categories are sorted alphabetically by default
23Plotting: Geometries

Bar Chart

I stat="count" automatically counts the frequency of observations

grades <- data.frame(grade=c("good", "good", "good",
"fair", "fair",
"bad", "bad", "bad",
"bad", "bad"))

ggplot(grades) +
geom_bar(aes(x=grade), stat="count")

0

1

2

3

4

5

bad fair good
grade

co
un

t

24Plotting: Geometries

Stacked Bar Chart

I Group membership controlled by fill color

ggplot(diamonds) +
geom_bar(aes(x=color, fill=cut), stat="count")

0

3000

6000

9000

D E F G H I J
color

co
un

t

cut

Fair

Good

Very Good

Premium

Ideal

25Plotting: Geometries

Grouped Bar Chart

I Bars are displayed next to each other via position="dodge"

ggplot(diamonds) +
geom_bar(aes(x=color, fill=cut), stat="count",

position="dodge")

0

1000

2000

3000

4000

5000

D E F G H I J
color

co
un

t

cut

Fair

Good

Very Good

Premium

Ideal

26Plotting: Geometries

Histogram

I Histogram shows frequency of continuous data by dividing the range of
values into bins

I Each bar then denotes the frequency of data falling into that bin
I Illustrates the distribution of the data

ggplot(points) +
geom_histogram(aes(x))

‘stat_bin()‘ using ‘bins = 30‘. Pick better value with
‘binwidth‘.

0

1

2

3

4

−1 0 1 2
x

co
un

t

27Plotting: Geometries

Histogram

I Optional arguments: border color (color), fill color (fill), width of
the bins (binwidth)

I ggplot automatically defines new variables (..count.. and
..density..) that can be used in the aesthetics

I y=..density.. displays density on y-axis instead of frequency

ggplot(points) +
geom_histogram(aes(x, y=..density..), binwidth=0.1,

fill="steelblue", colour="black")

0.0

0.5

1.0

1.5

2.0

−1 0 1 2
x

de
ns

ity

28Plotting: Geometries

Box Plot

I Box plots visualize distribution by highlighting median and quartiles

height <- data.frame(gender=c(rep("m", 100), rep("f", 100)),
height=c(rnorm(100, mean=175),

rnorm(100, mean=172)))
ggplot(height) +

geom_boxplot(aes(gender, height))

172

174

176

f m
gender

he
ig

ht

29Plotting: Geometries

Density Plot

I Estimates the density as a mean to approximate the distribution

I Smooth alternative of a histogram
I Optional argument: alpha allows colors to be transparent

ggplot(height) +
geom_density(aes(x=height, fill=gender),

stat="density", alpha=0.6)

0.0

0.1

0.2

0.3

0.4

172 174 176
height

de
ns

ity

gender

f

m

30Plotting: Geometries

Outline

1 Introduction

2 Plot Types (Geometries)

3 Plot Appearance

4 Advanced Usage

5 Wrap-Up

31Plotting: Appearance

Outline

3 Plot Appearance
Layers
Facets
Scales
Themes
Legends

32Plotting: Appearance

Multiple Layers

I Concatenation allows for combining several layers
I Each layer has it own aesthetics

df <- data.frame(px=rnorm(20), py=rnorm(20),
lx=seq(-1, +1, length.out=20))

df$ly <- df$lx^2

ggplot(df) +
geom_point(aes(px, py)) +
geom_line(aes(lx, ly))

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2
px

py

33Plotting: Appearance

Smoothing Layers

I Smoothing layer geom_smooth implements trend curves
I Linear trend (method="lm")
I Local polynomial regression (method="loess") with smoothing

parameter span
I Generalized additive model (method="gam")

I Variable choice is also controlled by aesthetics aes(x, y)

I Gray shade highlights the 95 % confidence interval

df <- data.frame(x=seq(0.5, 3,
length.out=100))

df$y <- sin(df$x) + rnorm(100)

ggplot(df, aes(x, y)) +
geom_point() +
geom_smooth(method="lm")

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3
x

y

34Plotting: Appearance

Smoothing Layers
method="lm"

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3

method="gam"

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3

method="loess", span=0.25

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3

method="loess", span=0.75

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3

35Plotting: Appearance

Outline

3 Plot Appearance
Layers
Facets
Scales
Themes
Legends

36Plotting: Appearance

Facets

I Facets display a grid of plots stemming from the same data
I Command: facet_grid(y ~ x) specifies grouping variables
I By default, the same axis resolution is used on adjacent plots

Example with 1 group on x-axis

ggplot(mpg, aes(displ, hwy)) +
geom_point(alpha = 0.3) +
facet_grid(. ~ year)

1999 2008

20

30

40

2 3 4 5 6 7 2 3 4 5 6 7
displ

hw
y

37Plotting: Appearance

Facets
Example with 2 groups on x- and y-axis

ggplot(mpg, aes(displ, hwy)) +
geom_point(alpha = 0.3) +
facet_grid(cyl ~ year)

1999 2008

20
30
40

20
30
40

20
30
40

20
30
40

4
5

6
8

2 3 4 5 6 7 2 3 4 5 6 7
displ

hw
y

38Plotting: Appearance

Outline

3 Plot Appearance
Layers
Facets
Scales
Themes
Legends

39Plotting: Appearance

Scales

Scales control the look of axes, especially for continuous and discrete data

I scale_<axis>_log10() uses
log-scale on axis
exp_growth <- data.frame(x=1:10,

y=2^(1:10))
ggplot(exp_growth, aes(x, y)) +
geom_point() +
scale_y_log10()

●

●

●

●

●

●

●

●

●

●

10

100

1000

2.5 5.0 7.5 10.0
x

y

40Plotting: Appearance

Scales

I coord_equal() enforces
an equidistant scaling on
both axes

ggplot(df, aes(x, y)) +
geom_point() +
coord_equal() ●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3
x

y

41Plotting: Appearance

Geometry Layout

I Changes to geometry layout links to the use of aesthetics
I Additional function call to scale_<aestetics>_<type>(...)

1 Aesthetic to change, e. g. color, fill, linetype, . . .
2 Variable type controls appearance, e. g. gradient (continuous scale),
hue (discrete values), manual (manual breaks), . . .

ggplot(mtcars, aes(x=mpg, y=disp)) +
geom_point(aes(size=hp, color=as.factor(cyl)))

●●

●

●

●

●

●

●●
●●

● ●●

●●
●

●● ●

●

●●

●

●

●

●
●

●

●

●

●
100

200

300

400

10 15 20 25 30 35
mpg

di
sp

as.factor(cyl)
●

●

●

4

6

8

hp

●

●

●

●
●

100

150

200

250

300

42Plotting: Appearance

scale_color_gradient

I Color gradient stems from a range between two colors
→ Arguments: low, high

I Useful for visualizing continuous values

points_continuous <- cbind(points, z=runif(20))
p <- ggplot(points_continuous) +

geom_point(aes(x=x, y=y, color=z))

p + scale_color_gradient()

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0
−0.5

0.0
0.5
1.0

−1 0 1 2
x

y

0.25

0.50

0.75

p + scale_color_gradient(low="darkblue",
high="darkred")

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0
−0.5

0.0
0.5
1.0

−1 0 1 2
x

y

0.25

0.50

0.75

43Plotting: Appearance

scale_color_hue

I Uses disjunct buckets of colors for visualizing discrete values

I Requires source variable to be a factor

points_discrete <- cbind(points,
z=as.factor(sample(5, 20, replace=TRUE)))

p <- ggplot(points_discrete) +
geom_point(aes(x=x, y=y, color=z))

p + scale_color_hue()

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0
−0.5

0.0
0.5
1.0

−1 0 1 2
x

y

●

●

●

●

●

1

2

3

4

5

p + scale_color_hue(h=c(180, 270))

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0
−0.5

0.0
0.5
1.0

−1 0 1 2
x

y

●

●

●

●

●

1

2

3

4

5

44Plotting: Appearance

scale_color_manual

I Specifies colors for different groups manually
I Argument values specifies a vector of new color names

ggplot(data_lines2) +
geom_line(aes(x=x, y=y, color=var)) +
scale_color_manual(values=c("darkred", "darkblue"))

5

10

15

20

2.5 5.0 7.5 10.0
x

y

var

y1

y2

45Plotting: Appearance

Color Palettes

I Built-in color palettes change color scheme
I Distinguished by discrete and continuous source variables

1 Discrete values and colors via scale_color_brewer()
2 Continuous values and colors via scale_color_distiller()

I Further customizations
I Overview of color palettes:
http:
//www.cookbook-r.com/Graphs/Colors_(ggplot2)

I Package ggtheme has several built-in schemes:
https://cran.r-project.org/web/packages/
ggthemes/vignettes/ggthemes.html

I Color picker:
http://www.colorbrewer2.org/

46Plotting: Appearance

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)
https://cran.r-project.org/web/packages/ggthemes/vignettes/ggthemes.html
https://cran.r-project.org/web/packages/ggthemes/vignettes/ggthemes.html
http://www.colorbrewer2.org/

Discrete Color Palettes

I scale_color_brewer accesses built-in color palettes for discrete
values

pd <- ggplot(points_discrete) +
labs(x="", y="") +
geom_point(aes(x, y, color=z))

Default

pd + scale_color_brewer()

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2

z
●

●

●

●

●

1

2

3

4

5

Intense colors

pd + scale_color_brewer(palette="Set1")

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2

z
●

●

●

●

●

1

2

3

4

5

47Plotting: Appearance

Continuous Color Palettes

I scale_color_distiller accesses built-in color palettes for
continuous values

pc <- ggplot(points_continuous) +
labs(x="", y="") +
geom_point(aes(x, y, color=z))

Default

pc + scale_color_distiller()

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2

0.25

0.50

0.75

z

Spectral colors
pc + scale_color_distiller(palette="Spectral")

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2

0.25

0.50

0.75

z

48Plotting: Appearance

Gray-Scale Coloring

I No unique identifier for gray-scale coloring
1 scale_color_gray() colors discrete values in gray-scale
→ Attention: “grey” as used in British English

2 scale_color_gradient() refers to a continuous spectrum

Discrete values

pd + scale_color_grey()

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2

z
●

●

●

●

●

1

2

3

4

5

Continuous values

pc + scale_color_gradient(low="white",
high="black")

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2

0.25

0.50

0.75

z

49Plotting: Appearance

Ranges

I Crop plot to ranges via xlim(range)
or ylim(range)

ggplot(df, aes(x, y)) +
geom_point() +
xlim(c(1, 2)) +
ylim(c(-1, +1))

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

1.00 1.25 1.50 1.75 2.00
x

y

50Plotting: Appearance

Outline

3 Plot Appearance
Layers
Facets
Scales
Themes
Legends

51Plotting: Appearance

Themes

I Themes further customize the appearance of plots

I Printer-friendly theme theme_bw() for replacing the gray
background

ggplot(df, aes(x, y)) +
geom_point()

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3
x

y

ggplot(df, aes(x, y)) +
geom_point() +
theme_bw()

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3
x

y

52Plotting: Appearance

Themes

I Package ggthemes provides further styles

library(ggthemes)

Example with the style from The Economist

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
theme_economist()

●●
●
●

●●
●

●
●

●
●

●● ●●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●●
●●

●

●
●
● ●

●
●

●●
●●

●

●
●

● ●

●

●
●

●

●
●

●

●●
●

●

●
●

●
●

● ●
●

●
●
●
● ●

●●●
●●
●

●
●

●
●

●
●

●
●
●
●

●

●
●●

●

●
●
●●

●

●
●

●
●

●●
●

●

●
●
●

●●●
●

●
●

●

●

●
●

●
●

● ●

●
●
●
●

●
● ●

●

●
●

●
●

●
●●

● ●

●●

●
●

● ●
●
●

●●
●

●
●
●

●

●● ●●
●
●
●
●

●●
●
●

●

●

●
●

●●

●●
●

●
●

●●

●●
●

●

●
●
●
●

●

●
●●
●

●
●

●
●

●

●

●●

●

●

●

●

●● ●●

●
●

●

●

●

●
●
●●●

●
●

●● ●

20

30

40

2 3 4 5 6 7
displ

hw
y

53Plotting: Appearance

Labels

I Change labels via labs(...)

ggplot(df, aes(x, y)) +
geom_point() +
labs(x = "x-axis", y = "y-axis")

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3
x−axis

y−
ax

is

Recommendation: don’t use titles in plots
→ Instead of titles, better place details in the caption of scientific papers

54Plotting: Appearance

Outline

3 Plot Appearance
Layers
Facets
Scales
Themes
Legends

55Plotting: Appearance

Legend

I Legends are placed automatically for each aesthetic in used
I Examples: group, color, . . .

ggplot(data_lines2) +
geom_line(aes(x=x, y=y, color=var))

5

10

15

20

2.5 5.0 7.5 10.0
x

y

var

y1

y2

I Frequent changes include
1 Data is in long format and should be renamed
2 Data is in long format and should be customized
3 Data is in wide format and each geom_* should be customized

56Plotting: Appearance

Legend

Case 1: Data is in long format and should be renamed
I Add scale_<aesthetics>_discrete(...) to overwrite

matching
I Argument labels specifies new labels

ggplot(data_lines2) +
geom_line(aes(x=x, y=y, color=var)) +
scale_color_discrete(labels=c("One", "Two"))

5

10

15

20

2.5 5.0 7.5 10.0
x

y

var

One

Two

57Plotting: Appearance

Legend

Case 2: Data is in long format and should be customized

I Add scale_<aesthetics>_manual to change appearance
I Argument values specifies new attributes (e. g. color)

ggplot(data_lines2) +
geom_line(aes(x=x, y=y, color=var)) +
scale_color_manual(values=c("darkred", "darkblue"))

5

10

15

20

2.5 5.0 7.5 10.0
x

y

var

y1

y2

58Plotting: Appearance

Legend

Case 3: Data is in wide format and each geom_* should be customized
I Add additional aesthetics with string identifier
I Change appearance with scale_<aesthetics>_manual()

ggplot(data_sin_cos, aes(x)) +
geom_line(aes(y=sin, color="sin")) +
geom_line(aes(y=cos, color="cos")) +
scale_color_manual(labels=c("Sine", "Cosine"),

values=c("darkred", "darkblue"))

−1.0

−0.5

0.0

0.5

1.0

0 2 4 6
x

si
n

colour

Sine

Cosine

I Recommendation: better convert to long format with melt(...)! 59Plotting: Appearance

Legend Position

I Default position of legend is outside of plot
I theme(legend.position="none") hides the legend
I theme(legend.position=c(x, y)) moves it inside the grid
I x ,y ∈ [0,1] are relative positions starting from the bottom-left corner

ggplot(data_lines2) +
geom_line(aes(x=x, y=y, color=var)) +
theme(legend.position=c(0.2, 0.6))

5

10

15

20

2.5 5.0 7.5 10.0
x

y

var

y1

y2

60Plotting: Appearance

Legend Title

I Legend title is set inside scale_<aesthetics>_<type>(...)

I Passed as the first argument or argument name

I Displays maths via expression(...)

p <- ggplot(data_lines2) +
geom_line(aes(x=x, y=y, color=var))

p + scale_color_discrete(name="new")

5

10

15

20

2.5 5.0 7.5 10.0
x

y

new

y1

y2

p + scale_color_discrete(expression(alpha[i]))

5

10

15

20

2.5 5.0 7.5 10.0
x

y

αi

y1

y2

61Plotting: Appearance

Outline

1 Introduction

2 Plot Types (Geometries)

3 Plot Appearance

4 Advanced Usage

5 Wrap-Up

62Plotting: Advanced Usage

qplot

I qplot(x, y) is a wrapper similar to plot(...)

Histogram

qplot(df$x)

0

1

2

3

4

1 2 3
df$x

co
un

t

Point plot

qplot(dfx, dfy)

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

3

1 2 3
df$x

df
$y

Line plot

qplot(dfx, dfy,
geom="line")

−1

0

1

2

3

1 2 3
df$x

df
$y

63Plotting: Advanced Usage

Date and Time

I Values of type date or time are formatted automatically

Date
dates <- as.Date(c("2016-01-01", "2016-02-01",

"2016-07-01", "2016-12-01"))
sales <- data.frame(date=dates,

value=c(10, 20, 40, 30))
ggplot(sales, aes(date, value)) +

geom_line()

10

20

30

40

Jan 2016 Apr 2016 Jul 2016 Okt 2016
date

va
lu

e

Time
times <- as.POSIXct(c("2001-01-01 10:00",

"2001-01-01 12:00",
"2001-01-01 15:00"))

temp <- data.frame(time=times,
value=c(15, 20, 25))

ggplot(temp, aes(time, value)) +
geom_line()

15.0

17.5

20.0

22.5

25.0

10:00 11:00 12:00 13:00 14:00 15:00
time

va
lu

e

64Plotting: Advanced Usage

Maps
I Package ggmap allows to plot geometries on a map

library(ggmap)

I Download map with get_map(...)
map <- get_map("Germany", zoom=5, color="bw")

I Coordinates are given as longitude/latitude
geo <- data.frame(lat=c(52.52, 50.12, 48.15),

lon=c(13.41, 8.57, 11.54))
ggmap(map) +

geom_point(data=geo, aes(lon, lat), color="red")

●

●

●

45

50

55

0 5 10 15 20
lon

la
t

65Plotting: Advanced Usage

Exporting Plots

I Workflow is greatly accelerated when exporting plots automatically

I PDF output is preferred in LATEX, PNG for Word
I ggsave(filename) exports the last plot to the disk

1 Export as PNG

ggsave("plot.png")

2 Export as PDF

ggsave("plot.pdf")

I File extension specifies format implicitly
I Alternative arguments specify filename and size (i. e. resolution)

p <- ggplot(df, aes(x, y))
ggsave(p, file="/path/plot.pdf",

width=6, height=4)

66Plotting: Advanced Usage

Outline

1 Introduction

2 Plot Types (Geometries)

3 Plot Appearance

4 Advanced Usage

5 Wrap-Up

67Plotting: Wrap-Up

Further Reading
Online resources

I Official ggplot2 documentation
http://docs.ggplot2.org/current/
→ Collection of reference materials and examples how parameters affect the layout

I Cookbook for R Graphs
http://www.cookbook-r.com/Graphs/
→ Collection of problem-solution pairs by plot type with different layout customizations

I Introduction to R Graphics with ggplot2
http://en.slideshare.net/izahn/rgraphics-12040991
→ Introductory presentation with many examples

I ggplot2 Essentials
http://www.sthda.com/english/wiki/ggplot2-essentials
→ Overview of different plots and available options for customization

Books

I Wickham (2016). “ggplot2: Elegant Graphics for Data Analysis”, 2nd ed., Springer.

68Plotting: Wrap-Up

http://docs.ggplot2.org/current/
http://www.cookbook-r.com/Graphs/
http://en.slideshare.net/izahn/rgraphics-12040991
http://www.sthda.com/english/wiki/ggplot2-essentials

	Introduction
	Plot Types (Geometries)
	Plot Appearance
	Layers
	Facets
	Scales
	Themes
	Legends

