
Recursion & Dynamic
Programming

Algorithm Design & Software Engineering
March 17, 2016

Stefan Feuerriegel

Today’s Lecture

Objectives

1 Specifying the complexity of algorithms with the big O notation

2 Understanding the principles of recursion and divide & conquer

3 Learning the contrary concept of dynamic programming

2Recursion & DP

Outline

1 Computational Complexity

2 Recursion

3 Dynamic Programming

4 Greedy Algorithms

3Recursion & DP

Outline

1 Computational Complexity

2 Recursion

3 Dynamic Programming

4 Greedy Algorithms

4Recursion & DP: Computational Complexity

Need for Efficient Algorithms

I Computers can perform billions of arithmetic operations per second,
but this might not be sufficient

I Memory is also limited

I Need for efficient algorithms that scale well

0

100

200

300

400

2 4 6
Problem Size n

R
un

tim
e

T
(n

)

Exponential Growth

Quadratic Growth

Examples
I Go games last up to 400 moves, with around 250 choices per move

I Cracking a 2048 bit RSA key theoretically requires 2112 trials

I Calculating the optimal order of delivering n parcels has n! possibilities

5Recursion & DP: Computational Complexity

Computational Complexity

I Computational complexity is measured by time T (n) and space S(n)
I Exact measurements (e. g. timings) have shortcomings

I Dependent on specific hardware setup
I Difficult to convert into timings for other architectures
I Cannot describe how well the algorithm scales
I Initialization times are usually neglected

Approach
I Count operations as a function of problem size n

I Analyze best-case, average and worst-case behavior

6Recursion & DP: Computational Complexity

Computational Complexity

Question

I What is the default number of operations for ‖x‖2 =
√

xT x for
x ∈ Rn?

I 1 square root, 1 multiplication
I 1 square root, n multiplications and n−1 additions
I 1 square root, n multiplications and n additions

I No Pingo available

Question

I What better upper bound can one achieve for summing over n
numbers?

I n−1 additions
I bn/2c additions
I logn additions

I No Pingo available
7Recursion & DP: Computational Complexity

Big O Notation

I Big O notation (or Landau O) describes the asymptotic or limiting
behavior

I What happens when input parameters become very, very large

I Groups functions with the same growth rate (or an upper bound of that)

I Common functions

Notation Name Example
O(1) Constant Test if number is odd/even
O(logn) Logarithmic Finding an item in a sorted list
O(n logn) Loglinear Sorting n numbers
O(n) Linear Dot product,

finding an item in an unsorted list
O(n2) Quadratic Default matrix-by-vector multiplication
O(nc) Polynomial Default matrix-by-matrix multiplication
O(cn) Exponential Traveling salesman problem with DP

8Recursion & DP: Computational Complexity

Big O Notation

Example: testing if a number n is prime can be in O(n) or O(
√

n)

1 Variant in O(n)
Iterate all numbers in the range i = 2, . . . ,n and check if i is an integer
divisor of n

for (i in 2:n) {
if (n%%i == 0) {
print("Not prime")

}
}

2 Variant in O(
√

n)
Changing for-loop as the largest possible divisor is

√
n

for (i in 2:sqrt(n)) {
if (n%%i == 0) {
print("Not prime")

}
}

9Recursion & DP: Computational Complexity

Complexity Classes

Even small cases are intractable for inefficient algorithms

1 × 10+1

1 × 10+3

1 × 10+5

1 × 10+7

2 4 6 8
Problem Size n

n^n

n!

2^n

n^2

n log n

log n

1

10Recursion & DP: Computational Complexity

Big O Notation

I Classifies algorithms by how they respond (e. g. in their runtime) to
changes in input size

I Gives the worst-case complexity regarding time or space

I Let f ,g : N 7→ R+, we define

f (x) = O(g(x)) as x → ∞

if and only if

|f (x)| ≤ c |g(x)| ∀x ≥ x0

where c is a positive constant

I Mathematically correct is f (x) ∈ O(g(x)), though more common is
f = O(g) where “=” means “is”

11Recursion & DP: Computational Complexity

Big O Notation

Example
I Assume f (x) = 5x2 + 10x + 20

I 5x2 is the highest growth rate

I To prove f (x) = O(g(x)) with g(x) = x2, let x0 = 1 and c = 35

|f (x)| ≤ c |g(x)|
⇔ |5x2 + 10x + 20| ≤ 5x2 + 10x + 20

⇒ |5x2 + 10x + 20| ≤ 5x2 + 10x2 + 20x2

⇔ |5x2 + 10x + 20| ≤ 35x2

⇔ |10x + 20| ≤ 30x2

I Hence f (x) = 5x2 + 10x + 20 = O(x2)

12Recursion & DP: Computational Complexity

O Calculus

Multiplication by a constant
I Let c 6= 0 be a constant, then O(c g) = O(g)
→ e. g.changing the underlying hardware does not affect the
complexity

I Example: 5 ·O(1) = O(1)

Sum rule
I Let f1 = O(g1) and f2 = O(g2), then f1 + f2 = O(g1 + g2)
→ e. g. complexity of sequentially executing two algorithms is only
affected by the one with the higher complexity

I As a special case: f1 = O(g) and f2 = O(g)⇒ f1 + f2 = O(g)

I Example: O(x) + O(x2) = O(x2)

Product rule
I Assume f1 = O(g1) and f2 = O(g2), then f1 f2 = O(g1 g2)
→ e. g. matches nested execution of loops

13Recursion & DP: Computational Complexity

Big O Notation

I The complexity class is a set of functions defined by

O(g) = {f : N 7→R+ |∃x0 ∈ N,c ∈R,c > 0 ∀x ≥ x0 : f (x)≤ c g(x)}

I Alternative to prove f = O(g) is to show that the following limits exists

lim
x→∞

f (x)

g(x)
< ∞

Example
I Show f (x) = 5x2 + 10x + 20 = O(x2)

I Apply limit theory

lim
x→∞

f (x)

x2 = lim
x→∞

5x2 + 10x + 20
x2 = 5 < ∞

14Recursion & DP: Computational Complexity

Related Notations

Different variants exists for all forms of lower and upper bounds, e. g.

1 Upper bound f = O(g): f grows not faster than g

2 Lower bound f = Ω(g): f grows at least as quickly as g

3 Tight bound f = Θ(g): f and g grow at the same rate

If f = Ω(g) and f = O(g), then f = Θ(g) because

c1f (x)︸ ︷︷ ︸
=Ω(g)

≤ f (x)︸︷︷︸
=Θ(f)

≤ c2f (x)︸ ︷︷ ︸
=O(g)

∀x ≥ x0

1

x0

x

c g(x)

f(x)

3

x0

x

c2 g(x)

f(x)

c1 g(x)

15Recursion & DP: Computational Complexity

Outline

1 Computational Complexity

2 Recursion

3 Dynamic Programming

4 Greedy Algorithms

16Recursion & DP: Recursion

Recursion

Idea
I Design algorithm to solve a problem by progressively solving smaller

instances of the same problem

Definition
Recursion is a process in which a function calls itself with:

1 a base case which terminates the recursion
→ Producing an answer without a recursive call

2 a set of rules which define how a base case is finally reached

Pseudocode

recursion <- function(...) {
if (condition) {
return(base_case)

}
return(recursion(...)) # recursive call

}

17Recursion & DP: Recursion

Factorial

I Factorial is the product of all positive numbers less or equal n

I Example: 5! =
5
∏
i=1

i = 1 ·2 ·3 ·4 ·5 = 120

I Recurrence equation

n! :=

{
1 if n = 1

n · (n−1)! if n ≥ 2

I Number of function calls is Θ(n)

fact <- function(n) {
if (n == 0) {
return(1)

}
return(n * fact(n-1))

}
fact(5)

[1] 120
18Recursion & DP: Recursion

Fibonacci Numbers

Fibonacci sequence of integers Fn for n ∈ N
I Recurrence equation Fn := Fn−1 + Fn−2 for n ≥ 3

I Base cases F1 := 1 and F2 := 1

Example

F5

=F4 + F3

=F3 + F2︸ ︷︷ ︸
=F4

+F2 + F1︸ ︷︷ ︸
=F3

=F2 + F1︸ ︷︷ ︸
=F3

+F2 + F2 + F1

=1 + 1 + 1 + 1 + 1

=5

Call stack for n = 5

fib(5) = 5

fib(4) = 3 fib(3) = 2

fib(3) = 2 fib(2) = 1 fib(1) = 1

fib(1) = 1fib(2) = 1

fib(2) = 1

+

++

+

19Recursion & DP: Recursion

Fibonacci Numbers
Implementation

fibonacci <- function(n) {
base case
if (n == 1 || n == 2) {
return(1)

}

recursive calls
return(fibonacci(n-1) + fibonacci(n-2))

}

Example

fibonacci(5)

[1] 5

20Recursion & DP: Recursion

Computational Complexity
Superlinear growth in the number of function calls

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

0

5000

10000

5 10 15 20
n

To
ta

l F
un

ct
io

n
C

al
ls

I Number of function calls is in O(Fn) = O(cn)

I But there are more efficient approaches, such as dynamic
programming or a closed-form formula

21Recursion & DP: Recursion

Divide and Conquer

Divide and conquer (D&C) is an algorithm pattern based on recursion

1 Divide complex problem into smaller, non-overlapping sub-problems

2 Conquer, i. e. find optimal solution to these sub-problems recursively

3 Combine solutions to solve the bigger problem

Problem

Solution to problem

Sub-problem 1 Sub-problem n

Solution to

sub-problem 1

Solution to

sub-problem n

Divide

Combine

Conquer

...

...

Common tasks

I Sorting

I Computational
geometry

I MapReduce in
Hadoop

22Recursion & DP: Recursion

Quicksort

I Quicksort is an efficient sorting algorithm for sorting x ∈ Rn

I Average performance is O(n logn), worst-case O(n2)

Idea

1 Choose pivot element from vector x

2 Partitioning: split into two parts xi < pivot and xi ≥ pivot

3 Recursively apply to each part (and combine)

Example
4 2 3 1

2 1 4 3

1 2 3 4

< pivot pivot

 pivot pivot< pivot < pivot

23Recursion & DP: Recursion

Quicksort

I Function quicksort based on divide and conquer

quicksort <- function(x) {
base case
if (length(x) <= 1) {
return(x)

}

pick random pivot element for "divide"
pivot <- x[sample(length(x), 1)]

recursive "conquer"
return(c(quicksort(x[x < pivot]), # "left"

quicksort(x[x >= pivot]))) # "right"
}

I Example

quicksort(c(4, 2, 3, 1))

[1] 1 2 3 4

24Recursion & DP: Recursion

Mergesort

Idea

1 Divide vector into sub-vectors until you have vectors of length 1

2 Conquer by merging sub-vectors recursively (i. e. fill in right order)

4 2 3 1

4 2 3 1

4 2 3 1

1 2 3 4

2 4 1 3

4 2 3 1

Divide

Divide Divide

Conquer

Conquer Conquer

Average and worst-case performance are in O(n logn) but with higher
factor in practice

25Recursion & DP: Recursion

Mergesort

1 Divide operation to split vector and then merge

mergesort <- function(x) {
if (length(x) == 1) {
return(x)

}

divide recursively
split <- ceiling(length(x)/2)
u <- mergesort(x[1:split])
v <- mergesort(x[(split+1):length(x)])

call conquer step
return(merge(u, v))

}

26Recursion & DP: Recursion

Mergesort

2 Conquer operation which merges two vectors recursively
merge <- function(u, v) { # input u and v must be sorted

new empty vector
x.sorted <- numeric(length(u) + length(v))
indices pointing to element processed next
uj <- 1
vj <- 1

for (i in 1:length(x.sorted)) {
case 1: v is completely processed => take u
case 2: still elements in u and the next
u element is smaller than the one in v
if (vj > length(v) ||

(uj <= length(u) && u[uj] < v[vj])) {
x.sorted[i] <- u[uj]
uj <- uj + 1

} else { # Otherwise: take v
x.sorted[i] <- v[vj]
vj <- vj + 1

}
}
return(x.sorted) # return sorted vector

}
27Recursion & DP: Recursion

Mergesort

I Example of merging two vectors as part of conquer step

merge(4, 2)

[1] 2 4

merge(c(2, 4), c(1, 3))

[1] 1 2 3 4

I Example of mergesort

mergesort(4)

[1] 4

mergesort(c(4, 2))

[1] 2 4

mergesort(c(4, 2, 3, 1))

[1] 1 2 3 4

28Recursion & DP: Recursion

Outline

1 Computational Complexity

2 Recursion

3 Dynamic Programming

4 Greedy Algorithms

29Recursion & DP: Dynamic Programming

Dynamic Programming

Idea

I Dynamic programming (DP) uses a memory-based data structure

I Reuse previous results

I Speed-ups computation but at the cost of increasing memory space

Approach
I Divide a complex problem into smaller, overlapping sub-problems

I Find optimal solution to these sub-problems and remember them

I Combine solutions to solve the bigger problem

I All sub-problems are ideally solved exactly once

Implementation
I Sub-problems can be processed in top-down or bottom-up order

I Bottom-up DP is usually faster by a constant factor

30Recursion & DP: Dynamic Programming

Dynamic Programming

Example: Fibonacci numbers

I Recursive approach triggers many redundant function calls

I Reordering these function calls can improve the performance

Dependencies in recursion

F5

F4 F3

F3 F2 F1

F1F2

F2

Dependencies in DP

F5

F4 F3

F1F2

31Recursion & DP: Dynamic Programming

Dynamic Programming

Top-down approach: memoization
I Store solutions to sub-problems in a table that is build top-down
I For each sub-problem, check table first if there is already a solution

1 If so, reuse it
2 If not, solve sub-problem and add solution to table

Bottom-up approach: tabulation
I Store solutions to sub-problems in a table that is build bottom-up

I Start with the smallest sub-problem

I Solve sub-problem and store solution

I Use solutions of smaller sub-problems to solve bigger ones

32Recursion & DP: Dynamic Programming

Comparison

Example: Fibonacci numbers with top-down dynamic programming

Top-down DP

FN

FN 1

FN 2

FN 3

FN 2

F1

Bottom-up DP

F1

F2

FN 2

···

FN 1

FN

33Recursion & DP: Dynamic Programming

Top-Down DP

fib_topdown <- function(n) {
check cache first
if (!is.na(memo_table[n])) {

return(memo_table[n])
}

solve sub-problem
if (n == 1 || n == 2) {
F <- 1

} else {
F <- fib_topdown(n-1) + fib_topdown(n-2)

}

memo_table[n] <<- F # add solution to global table
return(F)

}

Operator <<- sets a global variable outside the function

34Recursion & DP: Dynamic Programming

Top-Down DP

I Set up example n = 5

n <- 5

I Create global memoization table

memo_table <- rep(NA, n)

I Run top-down algorithm

fib_topdown(n)

[1] 5

I View memoization table after execution

memo_table

[1] 1 1 2 3 5

35Recursion & DP: Dynamic Programming

Bottom-Up DP
Example: Fibonacci numbers with bottom-up dynamic programming

fib_bottomup <- function(n) {
initialization of table
fib <- numeric(n)
fib[1] <- 1
fib[2] <- 1

bottom-up construction
for (i in 3:n) {
fib[i] <- fib[i-1] + fib[i-2]

}

return(fib[n])
}

fib_bottomup(5)

[1] 5

36Recursion & DP: Dynamic Programming

Comparison: Fibonacci Numbers

Recursion
I Runtime O(cn) becomes infeasible even for small n

I Direct space is O(1) but the call stack needs O(n)

Top-down DP
I Runtime O(n)

I Space O(n) and additional call stack in O(n)

Bottom-up DP
I Runtime O(n)

I Space O(n) and no call stack
→ Storing only last two values can reduce it to O(1)

37Recursion & DP: Dynamic Programming

Knapsack Problem

Description
I Suppose you want to steal items from a shop

I Each item i has weight wi and price pi

I Which items to choose?

Optimization Problem
I Decision variable xi ∈ {0,1} tells whether to include item i

I Your aim is to maximize your profit

P∗ = max
x1,...,xn

n

∑
i=1

xi wi

I Limitation is the capacity W of your bag

n

∑
i=1

xi wi ≤W

38Recursion & DP: Dynamic Programming

Knapsack Problem

Example
I Load necessary library

library(adagio)

I Sample values

w <- c(2, 4, 5, 7, 9)
p <- c(1, 5, 4, 10, 20)
W <- 13

I Solve problem with dynamic programming

knapsack <- knapsack(w, p, W)
knapsack$profit # maximum possible profit

[1] 25

I Print decision variable, i. e. which items to choose

knapsack$indices

[1] 2 5

39Recursion & DP: Dynamic Programming

DP for Knapsack Problem

I Build up matrix Mi,j for i = 0, . . . ,n and j = 0, . . . ,W

I Mi,j is the maximum profit with items 1, . . . , i and weight of up to j

I Solution to knapsack problem is given by Mn,W

I Recursive definition of M

Mi,j :=

0 if i = 0

Mi−1,j if wi > j

max{Mi−1,j ,Mi−1,j−wi + pi} if wi ≤ j

I The reasons behind the cases are
1 If i = 0, the set of items is empty
2 If wi > j , the new item exceeds the current weight limit j
3 Choose between

I Current-best solution without item i
I Combining price pi from item i and the recursive solution for the

remaining, available weight j−wi

40Recursion & DP: Dynamic Programming

Knapsack Problem
Bottom-up DP needs runtime O(n W) and space O(n W)

n <- length(p) # total number of items
M <- matrix(0, nrow=n+1, ncol=W+1)

note: matrix indexing starts with 1 in R
for (i in 1:n) {
for (j in 0:W) {
if (w[i] > j) {
M[i+1, j+1] <- M[i, j+1]

} else {
M[i+1, j+1] <- max(M[i, j+1],

M[i, j-w[i]+1] + p[i])
}

}
}

M[n+1, W+1]

[1] 25

41Recursion & DP: Dynamic Programming

Bellman’s Principle of Optimality

Theoretical basis why DP “works”

I We find an optimal solution by solving each sub-problem optimally

I “An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision”

→ Bellman (1957), Chap. 3

I Such a problem is said to have a optimal sub-structure
→ Greedy algorithms also produce good results

I Proof via backward induction

I Also highly relevant in game theory and reinforcement learning

42Recursion & DP: Dynamic Programming

Bellman’s Principle of Optimality

Problem
I Let’s assume an optimization problem with t = 1, . . . ,T steps

I Payoff F(t,at) in step t given decision at (“action”)

I V (t) is the optimal total utility when starting in step t

I Calculated by maximizing

V (1) = max
a1,...,aT

T

∑
t=1

F(t,at)

Bellman equation
I Separate today’s decision a1 from future decisions a2, . . . ,aT

I We can rewrite V (1) in a recursive fashion

V (1) = max
a1

[F(1,a1) + V (2)]

43Recursion & DP: Dynamic Programming

Outline

1 Computational Complexity

2 Recursion

3 Dynamic Programming

4 Greedy Algorithms

44Recursion & DP: Greedy Algorithms

Greedy Algorithms

Idea
I Make locally optimal choices with the hope of finding global optimum

I Depending on problem, greedy algorithms can find optimum or only
work as heuristic

I This depends on the specific setting→ optimal sub-structure

Examples
I Decision tree learning

I Routing in networks

I Heuristics for complex optimization problems

45Recursion & DP: Greedy Algorithms

Greedy Algorithms

Change-Making Problem
I What is the minimum number of coins when giving change?

I Assume that there is an infinite amount available

I Greedy strategy is to give out largest coins first and then continue in
decreasing order

Example: given 47 cents

47−20 = 27 20

27−20 = 7 20 20

Skip 10

7−5 = 2 20 20 5

2−2 = 0 20 20 5 2

46Recursion & DP: Greedy Algorithms

Greedy Algorithm for Change-Making Problem

min_coins_change <- function(cents) {
list of available coins
coins <- c(200, 100, 50, 20, 10, 5, 2, 1)
num <- 0

while (cents > 0) {
if (cents >= coins[1]) {

num <- num + 1 # one more coins
cents <- cents - coins[1] # decrease remaining value

} else {
switch to next smaller coin
coins <- coins[-1] # remove first entry in list

}
}

return(num)
}

min_coins_change(47) # 2x 20ct, 1x 5ct, 1x 2ct

[1] 4

47Recursion & DP: Greedy Algorithms

Heuristics

Idea
I Find an approximate solution instead of the exact solution

I Usually used when direct method is not efficient enough

I Trade-off: optimality vs. runtime

I Common applications: logistics, routing, malware scanners

48Recursion & DP: Greedy Algorithms

Heuristic for Knapsack Problem

Solve Knapsack problem by choosing items in the order of their
price-to-weight ratio

I Greedy algorithm

1 Sort items by
pi

wi
in decreasing order

2 Pick items in that order as long as capacity constraint remains fulfilled

I Runtime O(n) and space O(1)

I When number of items is unbounded (xi ≥ 0), the heuristic is only
worse by fixed factor
→ Heuristic always gives at least P∗/2

49Recursion & DP: Greedy Algorithms

Heuristic for Knapsack Problem

generate greedy order according to price/weight ratio
greedy_order <- order(p/w, decreasing=TRUE)

sum_p <- 0 # total profit in current iteration
sum_w <- 0 # total weight in current iteration

for (i in greedy_order) {
if (sum_w + w[i] <= W) {
sum_p <- sum_p + p[i]
sum_w <- sum_w + w[i]

}
}

sum_p # optimal solution was 25

[1] 25

50Recursion & DP: Greedy Algorithms

Greedy Algorithms vs. Heuristics

I Greedy algorithms might fail to find the optimal solution

I This depends on the specific setting (→ optimal sub-structure)

I Sometimes one can derive upper bounds

Example

I Task is to find the path with the highest total sum

I Greedy approach achieves 11, while optimum is 114

8

27

10399

Greedy solution

8

27

10399

Optimum solution

51Recursion & DP: Greedy Algorithms

Summary

Computational complexity
I Even fast hardware needs efficient algorithms

I Algorithmic performance is measured by runtime and memory

I Asymptotic complexity is given by e. g. the big O notation (upper limit)

Recursion
I Progressively solves smaller instances of a problem

I Function calls itself multiple times until reaching a base case

I Specific pattern is the approach of divide and conquer

52Recursion & DP: Wrap-Up

Summary

Dynamic programming
I Dynamic programming can be top-down or bottom-up

I Stores solutions of sub-problems and reuses them

I Decreases runtime at the cost of increasing memory usage

Greedy algorithms
I Making locally optimal choices to find or approximate global optimum

I Heuristics find approximate instead of exact solution

I Trade-off: solution quality vs. runtime

53Recursion & DP: Wrap-Up

	Computational Complexity
	Recursion
	Dynamic Programming
	Greedy Algorithms

