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Today’s Lecture

Objectives

1 Learning how k -means clustering works

2 Understanding dimensionality reduction via principal component
analysis
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Recap: Supervised vs. Unsupervised Learning

Supervised learning

I Machine learning task of inferring a function from labeled training data

I Training data includes both the input and the desired results
→ correct results (target values) are given

Unsupervised learning

I Methods try to find hidden structure in unlabeled data

I The model is not provided with the correct results during the training

I No error or reward signal to evaluate a potential solution
I Examples:

I Clustering (e. g. by k -means algorithm)
→ group into classes only on the basis of their statistical properties

I Dimensionality reduction (e. g. by principal component analysis)
I Hidden Markov models with unsupervised learning
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Unsupervised Learning

Objective
I Find interesting insights in data

I Key metrics can be relationships, main characteristics or similarity of
data points

I Usually of exploratory nature as their are no labels

Pros and cons
I Often easy to get unlabeled data
→ Labels can be expensive when manual annotations are needed

I Highly subjective as a standardized goal is missing
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Clustering vs. Dimensionality Reduction

Clustering

Feature A

Fe
at

u
re

 B
Dimensionality reduction

y

x

z

⇓

z

I Identifies subgroups of data
points with homogeneous
characteristics

I Calculates the main
dimensions across that data
points are distributed

I Transforms data onto that
subset of dimensions
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k -Means Clustering

I Partition n observations into k clusters in which each observation
belongs to the cluster with the nearest mean, serving as a prototype
for the cluster

Feature A

Fe
at

u
re

 B

I Computationally expensive; instead, we use efficient heuristics

I Default: Euclidean distance as metric and variance as a measure of
cluster scatter

9Unsupervised Learning: k -Means Clustering



Lloyd’s Algorithm: Outline

1 Randomly generated k initial "means" (here: k = 3)

2 Create k clusters by associating every observation with the nearest
mean (colored partitions)

3 Centroid of each of the k clusters becomes the new mean

4 Repeat steps 2 and 3 until convergence 10Unsupervised Learning: k -Means Clustering
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Lloyd’s Algorithm: Pseudocode

1 Initialization
Choose a set of k means m(1)

1 , . . . ,m(1)
k randomly

2 Assignment Step
Assign each observation to the cluster whose mean is closest to it, i.e.

S(t)
i =

{
xp :

∥∥xp−m(t)
i

∥∥≤ ∥∥xp−m(t)
j

∥∥ ∀ 1≤ j ≤ k
}

where each observation is assigned to exactly one cluster, even if it
could be is assigned to two or more of them

3 Update Step
Calculate the new means to be the centroids of the observations in the
new clusters

m(t+1)
i =

1∣∣∣S(t)
i

∣∣∣ ∑
xj∈S(t)

i

xj
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k -Means Clustering in R
I Prepare 2-dimensional sample data

d <- cbind(c(1,2,4,5), c(1,1,3,4))

I Call k -means via kmeans(d, k, nstart=n) with n
initializations to get cluster means
km <- kmeans(d, 2, nstart=10)
km

## K-means clustering with 2 clusters of sizes 2, 2
##
## Cluster means:
## [,1] [,2]
## 1 4.5 3.5
## 2 1.5 1.0
##
## Clustering vector:
## [1] 2 2 1 1
##
## Within cluster sum of squares by cluster:
## [1] 1.0 0.5
## (between_SS / total_SS = 91.0 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
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k -Means Clustering in R

I Calculate within-cluster sum of squares (WCSS) via

sum(km$tot.withinss)

## [1] 1.5

I Plot dataset as circles colored (col=) according to calculated cluster
I Add cluster centers km$centers as stars (pch=8)

plot(d, col=km$cluster)
points(km$centers, col=1:nrow(km$centers), pch = 8)
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Optimal Choice of k

Example: Plots show the results of applying k -means clustering with
different values of k
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Note: Final results can vary according to random initial means!
→ In practice, k -means clustering will be performed using multiple random
assignments and only the best result is reported
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Optimal Choice of k

I Optimal choice of k searches for a balance between maximum
compression (k = 1) and maximum accuracy (k = n)

I Diagnostic checks to determine the number of clusters, such as
1 Simple rule of thumb sets k ≈

√
n/2

2 Elbow Method: Plot percent of explained variance vs. number of
clusters

3 Usage of information criteria
4 . . .

I k -means minimizes the within-cluster sum of squares (WCSS)

argmin
S

k

∑
i=1

∑
xj∈Si

‖xj −µµµ i‖
2

with clusters S = {S1, . . . ,Sk } and mean points µµµ i in Si
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Clustering

Research Question

Group countries based on income, literacy, infant mortality and life
expectancy (file: countries.csv) into three groups accounting for
developed, emerging and undeveloped countries.

# Use first column as row names for each observation
countries <- read.csv("countries.csv", header=TRUE, sep=",", row.names=1)
head(countries)

## Per.capita.income Literacy Infant.mortality Life.expectancy
## Brazil 10326 90.0 23.60 75.4
## Germany 39650 99.0 4.08 79.4
## Mozambique 830 38.7 95.90 42.1
## Australia 43163 99.0 4.57 81.2
## China 5300 90.9 23.00 73.0
## Argentina 13308 97.2 13.40 75.3
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Clustering

km <- kmeans(countries, 3, nstart=10)
km

## K-means clustering with 3 clusters of sizes 7, 7, 5
##
## Cluster means:
## Per.capita.income Literacy Infant.mortality Life.expectancy
## 1 35642.143 98.50 4.477143 80.42857
## 2 3267.286 70.50 56.251429 58.80000
## 3 13370.400 91.58 23.560000 68.96000
##
## Clustering vector:
## Brazil Germany Mozambique Australia China
## 3 1 2 1 2
## Argentina United Kingdom South Africa Zambia Namibia
## 3 1 3 2 2
## Georgia Pakistan India Turkey Sweden
## 2 2 2 3 1
## Lithuania Greece Italy Japan
## 3 1 1 1
##
## Within cluster sum of squares by cluster:
## [1] 158883600 20109876 57626083
## (between_SS / total_SS = 94.1 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
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Visualizing Results of Clustering
plot(countries, col = km$cluster)

Per.capita.income
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Elbow Plot to Choose k
Choose k (here: k = 3) so that adding another cluster doesn’t result in
much better modeling of the data

ev <- c()
for (i in 1:15) {

km <- kmeans(countries, i, nstart=10)
ev[i] <- sum(km$betweenss)/km$totss

}
plot(1:15, ev, type="l", xlab="Number of Clusters", ylab="Explained Variance")
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Principal Component Analysis

Motivation
I Large datasets with many variables require extensive computing power

I However, only a small number of variables usually is informative

I High-dimensional data (≥ 4 dimensions) can be difficult to visualize

Principal component analysis (PCA)
I Finds a low-dimensional representation of data

I Reduces n-dimensional data to k -dimensions with k ≤ n

I Goal: keep as much of the informative value as possible
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Principal Component Analysis

Intuition
Standard basis
x = (0.3,0.5)T

Rotated basis
z = (0.7,0.1) T

I First principal component is the
direction with the largest variance

I Second principal component is
orthogonal and in the direction of
the largest remaining variance
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Principal Component Analysis

Use cases
I Principal components can work as input for supervised learning
→ especially suited for algorithms with super-linear time complexity in
the number of dimensions

I PCA can visualize high-dimensional data with simple graph

y

x

z

⇒⇒⇒ z
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Principal Component Analysis

I Linear combination of uncorrelated variables with maximal variance
→ high variance signals high information content

I Data is projected onto orthogonal component vectors so that the
projection error is minimized

I Order of directions gives the i-th principal component
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Standardizing

I Scaling changes results of PCA→ standardizing is recommend

I Center variable around mean µ = 0 with standard deviation σ = 1

Steps

1 Calculate mean and and standard deviation for x = [x1, . . . ,xN ]T

µ =
1

N−1

N

∑
i=1

xi σ =

√
1

N−1

N

∑
i=1

(xi −µ)2

Note: R uses internally denominator N−1 instead of N

2 Transform variable (built-in via scale(x) in R)

xi ←
xi −µ

σ
x <- scale(1:10)
c(mean(x), sd(x))

## [1] 0 1
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Algorithm

I PCA maps xi onto a new basis via a linear combination

zi = φ1,i x1 + φ2,i x2 + . . .+ φ1,n xn

with normalization
n
∑

j=1
φ 2

j,i = 1

I zi is the i-th principal component

I φ1,i , . . . ,φn,i are the loadings of the i-th principal component

I In matrix notation, this gives

Z = ΦX

I Geometrically, Φ is a rotation with stretching
→ it also spans the directions of the principal components
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Algorithm

I If xi is standardized, it has mean zero and also zi

I Hence, the variance of zi is

1
N

N

∑
j=1

z2
j,i

I First loading vector searches a direction to maximize the variance

max
φj,1

1
N

N

∑
j=1

z2
j,i = max

φj,1

1
N

N

∑
i=1

[
n

∑
j=1

φj,1xi,j

]2

subject to
n

∑
j=1

φ
2
j,1 = 1

I Numerically solved via a singular value decomposition
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Singular Value Decomposition

Covariance matrix
I Covariance matrix Σ for the standardized data is given by

Σ =
1
N

X T X ⇔ Σij =
1
N

xT
i xj

I Σ ∈ RN×N is symmetric with diagonals being the variance

I Goal: high variance but orthogonality, i. e. zero off-diagonal elements

Singular value decomposition
I Singular value decomposition of square matrix X gives

X = VΣV−1

I V is a matrix with the eigenvectors of X (⇒ VV T = IN )

I Σ is a diagonal matrix with the corresponding eigenvalues

I Then Φ = V
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PCA in R

I PCA comes with various R packages but also via built-in routines
I Generating sample data

set.seed(0)
x <- rnorm(100)
y <- -0.8*x + 0.6*rnorm(100)
d <- cbind(x, y)

I Standard deviation of each variable before and after scaling

apply(d, 2, sd)

## x y
## 0.8826502 0.8546230

d.scaled <- apply(d, 2, scale)
apply(d.scaled, 2, sd)

## x y
## 1 1
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PCA in R

I Perform PCA with scaling via prcomp(data, scale=TRUE)

pca <- prcomp(d, scale=TRUE)

I Mean and standard deviation used for scaling
pca$center # mean => equals apply(d, 2, mean)

## x y
## 0.02266845 -0.04546569

apply(d, 2, mean)

## x y
## 0.02266845 -0.04546569

pca$scale # standard deviation

## x y
## 0.8826502 0.8546230
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PCA in R

I Principal component vectors→ pick first k columns of interest
head(pca$x)

## PC1 PC2
## [1,] -1.4038205 0.58340965
## [2,] 0.1474487 -0.41157419
## [3,] -2.1955568 -0.10122525
## [4,] -1.7827003 0.21971105
## [5,] -1.1120171 -0.48398399
## [6,] 2.5950741 0.09139112

I PCA loadings

pca$rotation

## PC1 PC2
## x -0.7071068 0.7071068
## y 0.7071068 0.7071068
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PCA in R
I Visualization of resulting principal component vectors

plot(pca$x, asp=1) # aspect ratio such that both axes have the same scale
box() # reset ticks
axis(1, at=pca$x[, 1], labels=FALSE) # customized ticks
axis(2, at=pca$x[, 2], labels=FALSE)
abline(h=0, col="red") # 1st principal component
abline(v=0, col="blue") # 2nd principal component
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PCA in R

I Plot of principal components on original scale in two dimensions
plot(x, y)
rot <- pca$rotation
abline(0, rot[2,1]/rot[1,1], col="red") # 1st PC
abline(0, rot[1,2]/rot[1,2], col="blue") # 2nd PC

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

33Unsupervised Learning: Principal Component Analysis



PCA in R

I Standard deviation of principal components
pca$sdev

## [1] 1.3191770 0.5096784

→ Higher standard deviation in first components, lower in last
I Absolute and proportional variance explained

pca$sdev^2 # absolute variance explained by each component

## [1] 1.7402279 0.2597721

pve <- pca$sdev^2 / sum(pca$sdev^2)
pve # proportion of variance explained

## [1] 0.870114 0.129886

I Manual inspection is necessary to identify a suitable k when not
explicitly specified beforehand
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PCA in R

Case study
I Reduce the dimensionality of the country dataset

I Goal is to retain a large portion of the variance, while still reducing the
number of dimensions

I Run PCA for country dataset

pca <- prcomp(countries, scale=TRUE)

I PCA loadings
pca$rotation

## PC1 PC2 PC3 PC4
## Per.capita.income 0.4650236 0.80152688 0.37236742 -0.05148053
## Literacy 0.4943729 -0.54941559 0.50335230 -0.44763206
## Infant.mortality -0.5346811 0.23163962 0.05703933 -0.81068226
## Life.expectancy 0.5034528 0.04516926 -0.77764097 -0.37385770

35Unsupervised Learning: Principal Component Analysis



Proportion of Variance Explained

I Plot with cumulative proportion of variance explained

pve <- pca$sdev^2 / sum(pca$sdev^2)
plot(cumsum(pve), xlab="i-th Principal Component",

ylab="Proportion of Variance Explained",
type="l", ylim=c(0, 1))
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→ First principal component explains more than 80 % of the variance

36Unsupervised Learning: Principal Component Analysis



PCA Example

I Density estimation reveals subgroups in one dimension

plot(density(pca$x))
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→ One also observes three groups: a peak, as well as a tail and a
leading group
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Summary

I Unsupervised learning usually provides explanatory insights

I k -means clustering identifies subsets of similar points

I Elbow plot determines a suitable number of clusters k

I PCA reduces dimensions with a minimal amount of information loss

Commands in R
kmeans(d, k, nstart=n) k -means clusterin
prcomp(d, scale=TRUE) PCA with scaling
cumsum(x) Cumulative sums
apply(d, f) Apply function f to all data points in d
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