Data Mining: Unsupervised Learning

Business Analytics Practice
Winter Term 2015/16
Stefan Feuerriegel

Today's Lecture

Objectives

11 Learning how k-means clustering works
$\boxed{2}$ Understanding dimensionality reduction via principal component analysis

Outline

1 Motivation

2 k-Means Clustering

3 Principal Component Analysis

4 Wrap-Up

Outline

1 Motivation

2 k-Means Clustering

3 Principal Component Analysis

4 Wrap-Up

Recap: Supervised vs. Unsupervised Learning

Supervised learning

- Machine learning task of inferring a function from labeled training data
- Training data includes both the input and the desired results
\rightarrow correct results (target values) are given

Unsupervised learning

- Methods try to find hidden structure in unlabeled data
- The model is not provided with the correct results during the training
- No error or reward signal to evaluate a potential solution
- Examples:
- Clustering (e.g. by k-means algorithm) \rightarrow group into classes only on the basis of their statistical properties
- Dimensionality reduction (e.g. by principal component analysis)
- Hidden Markov models with unsupervised learning

Unsupervised Learning

Objective

- Find interesting insights in data
- Key metrics can be relationships, main characteristics or similarity of data points
- Usually of exploratory nature as their are no labels

Pros and cons

- Often easy to get unlabeled data
\rightarrow Labels can be expensive when manual annotations are needed
- Highly subjective as a standardized goal is missing

Clustering vs. Dimensionality Reduction

Clustering

Feature A

Dimensionality reduction

- Calculates the main dimensions across that data points are distributed
- Transformon

Outline

1 Motivation

2 k-Means Clustering

3 Principal Component Analysis

4 Wrap-Up

k-Means Clustering

- Partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype for the cluster

Feature A

- Computationally expensive; instead, we use efficient heuristics
- Default: Euclidean distance as metric and variance as a measure of cluster scatter

Lloyd's Algorithm: Outline

1 Randomly generated k initial "means" (here: $k=3$)

2. Create k clusters by associating every observation with the nearest mean (colored partitions)

3 Centroid of each of the k clusters becomes the new mean

Lloyd's Algorithm: Outline

1 Randomly generated k initial "means" (here: $k=3$)
2 Create k clusters by associating every observation with the nearest mean (colored partitions)

3 Centroid of each of the k clusters becomes the new mean

Lloyd's Algorithm: Outline

1 Randomly generated k initial "means" (here: $k=3$)
2 Create k clusters by associating every observation with the nearest mean (colored partitions)
3 Centroid of each of the k clusters becomes the new mean

Lloyd's Algorithm: Outline

1 Randomly generated k initial "means" (here: $k=3$)
2 Create k clusters by associating every observation with the nearest mean (colored partitions)
3 Centroid of each of the k clusters becomes the new mean
4 Repeat steps 2 and 3 until convergence

Lloyd's Algorithm: Pseudocode

1 Initialization
Choose a set of k means $\mathbf{m}_{1}^{(1)}, \ldots, \mathbf{m}_{k}^{(1)}$ randomly
2 Assignment Step
Assign each observation to the cluster whose mean is closest to it, i.e.

$$
S_{i}^{(t)}=\left\{\mathbf{x}_{p}:\left\|\mathbf{x}_{p}-\mathbf{m}_{i}^{(t)}\right\| \leq\left\|\mathbf{x}_{p}-\mathbf{m}_{j}^{(t)}\right\| \forall 1 \leq j \leq k\right\}
$$

where each observation is assigned to exactly one cluster, even if it could be is assigned to two or more of them
3 Update Step
Calculate the new means to be the centroids of the observations in the new clusters

$$
\mathbf{m}_{i}^{(t+1)}=\frac{1}{\left|S_{i}^{(t)}\right|} \sum_{\mathbf{x}_{j} \in S_{i}^{(t)}} \mathbf{x}_{j}
$$

k-Means Clustering in R

- Prepare 2-dimensional sample data

```
d <- cbind(c(1, 2,4,5), c(1,1,3,4))
```

- Call k-means via kmeans (d, k, $\mathrm{nstart=} \mathrm{n}$) with n initializations to get cluster means

```
km <- kmeans(d, 2, nstart=10)
km
## K-means clustering with 2 clusters of sizes 2, 2
##
## Cluster means:
## [,1] [, 2]
## 1 4.5 3.5
## 2 1.5 1.0
##
## Clustering vector:
## [1] 2 2 1 1
##
## Within cluster sum of squares by cluster:
## [1] 1.0 0.5
## (between_SS / total_SS = 91.0 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "size" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
```


k-Means Clustering in R

- Calculate within-cluster sum of squares (WCSS) via

```
sum(km$tot.withinss)
## [1] 1.5
```

- Plot dataset as circles colored (col=) according to calculated cluster
- Add cluster centers km\$centers as stars (pch=8)

```
plot(d, col=km$cluster)
points(km$centers, col=1:nrow(km$centers), pch = 8)
```


Optimal Choice of k

Example: Plots show the results of applying k-means clustering with different values of k

$$
k=3
$$

Note: Final results can vary according to random initial means!
\rightarrow In practice, k-means clustering will be performed using multiple random assignments and only the best result is reported

Optimal Choice of k

- Optimal choice of k searches for a balance between maximum compression ($k=1$) and maximum accuracy ($k=n$)
- Diagnostic checks to determine the number of clusters, such as

1 Simple rule of thumb sets $k \approx \sqrt{n / 2}$
2 Elbow Method: Plot percent of explained variance vs. number of clusters
3 Usage of information criteria
4 ...

- k-means minimizes the within-cluster sum of squares (WCSS)

$$
\underset{S}{\arg \min } \sum_{i=1}^{k} \sum_{\boldsymbol{x}_{j} \in S_{i}}\left\|\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right\|^{2}
$$

with clusters $S=\left\{S_{1}, \ldots, S_{k}\right\}$ and mean points μ_{i} in S_{i}

Clustering

Research Question

Group countries based on income, literacy, infant mortality and life expectancy (file: countries.csv) into three groups accounting for developed, emerging and undeveloped countries.

```
# Use first column as row names for each observation
countries <- read.csv("countries.csv", header=TRUE, sep=",", row.names=1)
head(countries)
\begin{tabular}{lrrrr} 
\#\# & Per.capita.income & Literacy & Infant.mortality & Life.expectancy \\
\#\# Brazil & 10326 & 90.0 & 23.60 & 75.4 \\
\#\# Germany & 39650 & 99.0 & 4.08 & 79.4 \\
\#\# Mozambique & 830 & 38.7 & 95.90 & 42.1 \\
\#\# Australia & 43163 & 99.0 & 4.57 & 81.2 \\
\#\# China & 5300 & 90.9 & 23.00 & 73.0 \\
\#\# Argentina & 13308 & 97.2 & 13.40 & 75.3
\end{tabular}
```


Clustering

```
km <- kmeans(countries, 3, nstart=10)
km
K-means clustering with 3 clusters of sizes 7, 7, 5
##
## Cluster means:
# Per.capita.income Literacy Infant.mortality Life.expectancy
## 1 35642.143 98.50 80.42857
## 2 3267.286 10.50 70. 50.251429 58.80000
## 3 13370.400 91.58 年 # 23.560000 68.96000
##
Clustering vector:
\begin{tabular}{rrrrrr} 
Brazil & Germany & Mozambique & Australia & China \\
3 & 1 & 2 & 1 & 2 \\
Argentina United Kingdom & South Africa & Zambia & Namibia \\
3 & 1 & 3 & 2 & 2 \\
Georgia & Pakistan & India & 2 & Turkey & Sweden \\
2 & 2 & Italy & Japan & 1 \\
Lithuania & Greece & 1 & 1 & 1 &
\end{tabular}
Within cluster sum of squares by cluster:
## [1] 158883600 20109876 57626083
## (between_SS / total_SS = 94.1 %)
##
## Available components:
##
\#\# [1] "cluster" "centers" "totss" "withinss"
# [5] "tot.withinss" "betweenss"
"size"
"iter"
## [9] "ifault"
```


Visualizing Results of Clustering

```
plot(countries, col = km$cluster)
```


Elbow Plot to Choose k

Choose k (here: $k=3$) so that adding another cluster doesn't result in much better modeling of the data

```
ev <- c()
for (i in 1:15) {
    km <- kmeans (countries, i, nstart=10)
    ev[i] <- sum(km$betweenss)/km$totss
}
plot(1:15, ev, type="l", xlab="Number of Clusters", ylab="Explained Variance")
```


Outline

1 Motivation

2 k-Means Clustering

3 Principal Component Analysis

4 Wrap-Up

Principal Component Analysis

Motivation

- Large datasets with many variables require extensive computing power
- However, only a small number of variables usually is informative
- High-dimensional data (≥ 4 dimensions) can be difficult to visualize

Principal component analysis (PCA)

- Finds a low-dimensional representation of data
- Reduces n-dimensional data to k-dimensions with $k \leq n$
- Goal: keep as much of the informative value as possible

Principal Component Analysis

Intuition

Standard basis
$\boldsymbol{x}=(0.3,0.5)^{T}$
Rotated basis
$z=(0.7,0.1)^{T}$

- First principal component is the direction with the largest variance
- Second principal component is orthogonal and in the direction of the largest remaining variance

Principal Component Analysis

Use cases

- Principal components can work as input for supervised learning
\rightarrow especially suited for algorithms with super-linear time complexity in the number of dimensions
- PCA can visualize high-dimensional data with simple graph

Principal Component Analysis

- Linear combination of uncorrelated variables with maximal variance \rightarrow high variance signals high information content
- Data is projected onto orthogonal component vectors so that the projection error is minimized
- Order of directions gives the i-th principal component

Standardizing

- Scaling changes results of PCA \rightarrow standardizing is recommend
- Center variable around mean $\mu=0$ with standard deviation $\sigma=1$

Steps

1 Calculate mean and and standard deviation for $\boldsymbol{x}=\left[x_{1}, \ldots, x_{N}\right]^{T}$

$$
\mu=\frac{1}{N-1} \sum_{i=1}^{N} x_{i} \quad \sigma=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}
$$

Note: R uses internally denominator $N-1$ instead of N
2 Transform variable (built-in via scale (x) in R)

$$
x_{i} \leftarrow \frac{x_{i}-\mu}{\sigma}
$$

```
x <- scale(1:10)
c(mean(x), sd(x))
## [1] 0 1
```


Algorithm

- PCA maps \boldsymbol{x}_{i} onto a new basis via a linear combination

$$
\boldsymbol{z}_{i}=\phi_{1, i} \boldsymbol{x}_{1}+\phi_{2, i} \boldsymbol{x}_{2}+\ldots+\phi_{1, n} \boldsymbol{x}_{n}
$$

with normalization $\sum_{j=1}^{n} \phi_{j, i}^{2}=1$

- \boldsymbol{z}_{i} is the i-th principal component
- $\phi_{1, i}, \ldots, \phi_{n, i}$ are the loadings of the i-th principal component
- In matrix notation, this gives

$$
Z=\Phi X
$$

- Geometrically, Φ is a rotation with stretching \rightarrow it also spans the directions of the principal components

Algorithm

- If \boldsymbol{x}_{i} is standardized, it has mean zero and also \boldsymbol{z}_{i}
- Hence, the variance of $\boldsymbol{z}_{\boldsymbol{i}}$ is

$$
\frac{1}{N} \sum_{j=1}^{N} z_{j, i}^{2}
$$

- First loading vector searches a direction to maximize the variance

$$
\max _{\phi_{j, 1}} \frac{1}{N} \sum_{j=1}^{N} z_{j, i}^{2}=\max _{\phi_{j, 1}} \frac{1}{N} \sum_{i=1}^{N}\left[\sum_{j=1}^{n} \phi_{j, 1} x_{i, j}\right]^{2} \quad \text { subject to } \quad \sum_{j=1}^{n} \phi_{j, 1}^{2}=1
$$

- Numerically solved via a singular value decomposition

Singular Value Decomposition

Covariance matrix

- Covariance matrix Σ for the standardized data is given by

$$
\Sigma=\frac{1}{N} X^{T} X \quad \Leftrightarrow \quad \Sigma_{i j}=\frac{1}{N} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}
$$

- $\Sigma \in \mathbb{R}^{N \times N}$ is symmetric with diagonals being the variance
- Goal: high variance but orthogonality, i. e. zero off-diagonal elements Singular value decomposition
- Singular value decomposition of square matrix X gives

$$
X=V \Sigma V^{-1}
$$

- V is a matrix with the eigenvectors of $X\left(\Rightarrow V V^{T}=I_{N}\right)$
- Σ is a diagonal matrix with the corresponding eigenvalues
- Then $\Phi=V$

PCA in R

- PCA comes with various R packages but also via built-in routines
- Generating sample data

```
set.seed(0)
x <- rnorm(100)
y <- -0.8*x + 0.6*rnorm(100)
d <- cbind(x, y)
```

- Standard deviation of each variable before and after scaling

```
apply(d, 2, sd)
## x y
## 0.8826502 0.8546230
d.scaled <- apply(d, 2, scale)
apply(d.scaled, 2, sd)
## x y
## 1 1
```


PCA in R

- Perform PCA with scaling via prcomp (data, scale=TRUE)

```
pca <- prcomp(d, scale=TRUE)
```

- Mean and standard deviation used for scaling

```
pca$center # mean => equals apply(d, 2, mean)
## x y
## 0.02266845 -0.04546569
apply(d, 2, mean)
## x y
## 0.02266845 -0.04546569
pca$scale # standard deviation
## x y
## 0.8826502 0.8546230
```


PCA in R

- Principal component vectors \rightarrow pick first k columns of interest

```
head(pca$x)
```

\#\#		PC1	PC2
\#\#	$[1]$,	-1.4038205	0.58340965
\#\#	$[2]$,	0.1474487	-0.41157419
\#\#	$[3]$,	-2.1955568	-0.10122525
\#\#	$[4]$,	-1.7827003	0.21971105
\#\#	$[5]$,	-1.1120171	-0.48398399
\#\#	$[6]$,	2.5950741	0.09139112

- PCA loadings

```
pca$rotation
\begin{tabular}{rrr} 
\#\# & PC1 & PC2 \\
\#\# & x & -0.7071068 \\
\#\# & 0.7071068 \\
y & 0.7071068 & 0.7071068
\end{tabular}
```


PCA in R

- Visualization of resulting principal component vectors

```
plot(pca$x, asp=1) # aspect ratio such that both axes have the same
box() # reset ticks
axis(1, at=pca$x[, 1], labels=FALSE) # customized ticks
axis(2, at=pca$x[, 2], labels=FALSE)
abline(h=0, col="red") # lst principal component
abline(v=0, col="blue") # 2nd principal component
```


PCA in R

- Plot of principal components on original scale in two dimensions

```
plot(x, y)
rot <- pca$rotation
abline(0, rot[2,1]/rot[1,1], col="red") # 1st PC
abline(0, rot[1,2]/rot[1,2], col="blue") # 2nd PC
```


PCA in R

- Standard deviation of principal components

```
pca$sdev
## [1] 1.3191770 0.5096784
```

\rightarrow Higher standard deviation in first components, lower in last

- Absolute and proportional variance explained

```
pca$sdev^2 # absolute variance explained by each component
## [1] 1.7402279 0.2597721
pve <- pca$sdev^2 / sum(pca$sdev^2)
pve # proportion of variance explained
## [1] 0.870114 0.129886
```

- Manual inspection is necessary to identify a suitable k when not explicitly specified beforehand

PCA in R

Case study

- Reduce the dimensionality of the country dataset
- Goal is to retain a large portion of the variance, while still reducing the number of dimensions
- Run PCA for country dataset

```
pca <- prcomp(countries, scale=TRUE)
```

- PCA loadings

```
pca$rotation
\begin{tabular}{lrrrr} 
\#\# & PC1 & PC2 & PC3 & PC4 \\
\#\# Per.capita.income & 0.4650236 & 0.80152688 & 0.37236742 & -0.05148053 \\
\#\# Literacy & 0.4943729 & -0.54941559 & 0.50335230 & -0.44763206 \\
\#\# Infant.mortality & -0.5346811 & 0.23163962 & 0.05703933 & -0.81068226 \\
\#\# Life.expectancy & 0.5034528 & 0.04516926 & -0.77764097 & -0.37385770
\end{tabular}
```


Proportion of Variance Explained

- Plot with cumulative proportion of variance explained

```
pve <- pca$sdev^2 / sum(pca$sdev^2)
plot(cumsum(pve), xlab="i-th Principal Component",
ylab="Proportion of Variance Explained",
    type="l", ylim=c(0, 1))
```


\rightarrow First principal component explains more than 80% of the variance

PCA Example

- Density estimation reveals subgroups in one dimension plot(density (pca\$x))

\rightarrow One also observes three groups: a peak, as well as a tail and a leading group

Outline

1 Motivation

2 k-Means Clustering

3 Principal Component Analysis

4 Wrap-Up

Summary

- Unsupervised learning usually provides explanatory insights
- k-means clustering identifies subsets of similar points
- Elbow plot determines a suitable number of clusters k
- PCA reduces dimensions with a minimal amount of information loss

Commands in \mathbf{R}

kmeans $(d, k$, nstart=n)	k-means clusterin
$\operatorname{prcomp}(d, \operatorname{scale=TRUE})$	PCA with scaling
cumsum (x)	Cumulative sums
$\operatorname{apply}(d, f)$	Apply function f to all data points in d

