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Today’s Lecture

Learning how k-means clustering works

Understanding dimensionality reduction via principal component
analysis
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Recap: Supervised vs. Unsupervised Learning

Supervised learning
» Machine learning task of inferring a function from labeled training data

» Training data includes both the input and the desired results
— correct results (target values) are given

Unsupervised learning
» Methods try to find hidden structure in unlabeled data

v

The model is not provided with the correct results during the training

v

No error or reward signal to evaluate a potential solution
Examples:

» Clustering (e.g. by k-means algorithm)

— group into classes only on the basis of their statistical properties
» Dimensionality reduction (e. g. by principal component analysis)
» Hidden Markov models with unsupervised learning
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Unsupervised Learning

Objective
» Find interesting insights in data

» Key metrics can be relationships, main characteristics or similarity of
data points

» Usually of exploratory nature as their are no labels

Pros and cons

» Often easy to get unlabeled data
— Labels can be expensive when manual annotations are needed

» Highly subjective as a standardized goal is missing
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Clustering vs. Dimensionality Reduction

Clustering Dimensionality reduction

yl\

Feature B

Feature A
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» Identifies subgroups of data » Calculates the main
points with homogeneous dimensions across that data
characteristics points are distributed

. » Tran
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k-Means Clustering

» Partition n observations into k clusters in which each observation

belongs to the cluster with the nearest mean, serving as a prototype
for the cluster

Feature B

Feature A

» Computationally expensive; instead, we use efficient heuristics

» Default: Euclidean distance as metric and variance as a measure of
cluster scatter

Unsupervised Learning: k-Means Clustering




Lloyd’s Algorithm: Outline

Randomly generated k initial "means" (here: k = 3)
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Randomly generated k initial "means” (here: k = 3)

Create k clusters by associating every observation with the nearest
mean (colored partitions)
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Lloyd’s Algorithm: Outline

Randomly generated k initial "means” (here: k = 3)

Create k clusters by associating every observation with the nearest
mean (colored partitions)

Centroid of each of the k clusters becomes the new mean
Repeat steps 2 and 3 until convergence




Lloyd’s Algorithm: Pseudocode

Initialization
Choose a set of k means mm . .,mf(” randomly

B Assignment Step
Assign each observation to the cluster whose mean is closest to it, i.e.

§” = {xo [xo —m” | < [|xp—mi”|| ¥ 1 <j <k}

where each observation is assigned to exactly one cluster, even if it
could be is assigned to two or more of them

Update Step

Calculate the new means to be the centroids of the observations in the
new clusters
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k-Means Clustering in R

» Prepare 2-dimensional sample data
d <- cbind(c(1,2,4,5), c(1,1,3,4))

» Call k-means via kmeans (d, k, nstart=n) withn
initializations to get cluster means

km <- kmeans(d, 2, nstart=10)
km

## K-means clustering with 2 clusters of sizes 2, 2
##

## Cluster means:

## [,11 [,2]

## 1 4.

## 2 1.
##

## Clustering vector:

## [1] 2 2 11

##

## Within cluster sum of squares by cluster:
## [1] 1.0 0.5

o
o

3ot
1.0

o

## (between_SS / total_SS = 91.0 %)

##

## Available components:

##

## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"

## [9] "ifault"



k-Means Clustering in R

» Calculate within-cluster sum of squares (WCSS) via
sum (kmStot .withinss)
## [1] 1.5

» Plot dataset as circles colored (col=) according to calculated cluster
» Add cluster centers kmScenters as stars (pch=8)

plot (d, col=km$cluster)

points (km$centers, col=1:nrow(km$Scenters), pch = 8)
e °
<
- *
§ w ] °
ST
o
= T - 1 T T T
1 2 3 4 5

di1]
Unsupervised Learning: k-Means Clustering



Optimal Choice of k

Example: Plots show the results of applying k-means clustering with
different values of k
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Note: Final results can vary according to random initial means!
— In practice, k-means clustering will be performed using multiple random
assignments and only the best result is reported
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Optimal Choice of k

» Optimal choice of k searches for a balance between maximum
compression (k = 1) and maximum accuracy (k = n)
» Diagnostic checks to determine the number of clusters, such as

Simple rule of thumb sets k = /n/2

Elbow Method: Plot percent of explained variance vs. number of
clusters

Usage of information criteria

» k-means minimizes the within-cluster sum of squares (WCSS)

argman Y =l

i=1xES;

with clusters S= { Si,..., Sk } and mean points i, in S;



Clustering

Research Question

Group countries based on income, literacy, infant mortality and life
expectancy (file: countries.csv) into three groups accounting for
developed, emerging and undeveloped countries.

countries <- read.csv("countries.csv", header=TRUE, sep=",", row.names=1)

head (countries)

## Per.capita.income Literacy Infant.mortality Life.expectancy
## Brazil 10326 90.0 23.60 75.4
## Germany 39650 99.0 4.08 79.4
## Mozambique 830 38.7 95.90 42.1
## Australia 43163 99.0 4.57 81.2
## China 5300 90.9 23.00 73.0
## Argentina 13308 97.2 13.40 75.3



Clustering

km <- kmeans (countries, 3, nstart=10)

## K-means clustering with 3 clusters of sizes 7, 7, 5

##

## Cluster means:

## Per.capita.income Literacy Infant.mortality Life.expectancy

## 1 35642.143 98.50 4.477143 80.42857

## 2 3267.286 70.50 56.251429 58.80000

## 3 13370.400 91.58 23.560000 68.96000

##

## Clustering vector:

## Brazil Germany Mozambique Australia China
## 3 1 2 1 2
## Argentina United Kingdom South Africa Zambia Namibia
## 3 1 3 2 2
## Georgia Pakistan India Turkey Sweden
## 2 2 2 3 1
## Lithuania Greece Italy Japan

## 3 1 1 1

##

## Within cluster sum of squares by cluster:
## [1] 158883600 20109876 57626083

## (between_SS / total_SS = 94.1 %)

##

## Available components:

##

## [1] "cluster" "centers" "totss" "withinss"
#4# [5] "tot.withinss" "betweenss" "size" "iter"

## [9] "ifault"
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Visualizing Results of Clustering

plot (countries, col = km$cluster)
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Elbow Plot to Choose k

Choose k (here: k = 3) so that adding another cluster doesn’t result in
much better modeling of the data

ev <- ¢()
for (i in 1:15) {
km <- kmeans (countries, i, nstart=10)
ev[i] <- sum(km$Sbetweenss)/kmS$totss

}
plot (1:15, ev, type="1", xlab="Number of Clusters", ylab="Explained Variance")
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Principal Component Analysis
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Principal Component Analysis

Motivation
» Large datasets with many variables require extensive computing power
» However, only a small number of variables usually is informative
» High-dimensional data (> 4 dimensions) can be difficult to visualize

Principal component analysis (PCA)
» Finds a low-dimensional representation of data
» Reduces n-dimensional data to k-dimensions with k < n
» Goal: keep as much of the informative value as possible

Unsupervised Learning: Principal Component Analysis



Principal Component Analysis

Intuition
Standard basis Rotated basis
x=(0.3,0.5)" z=(0.7,0.1)7T
[~ ) o o .
. ... i".. /o//'. 0;.

» First principal component is the
direction with the largest variance

» Second principal component is
orthogonal and in the direction of
the largest remaining variance

Unsupervised Learning: Principal Component Analysis



Principal Component Analysis

Use cases
» Principal components can work as input for supervised learning
— especially suited for algorithms with super-linear time complexity in
the number of dimensions

» PCA can visualize high-dimensional data with simple graph

xXW

Unsupervised Learning: Principal Component Analysis



Principal Component Analysis

» Linear combination of uncorrelated variables with maximal variance
— high variance signals high information content

» Data is projected onto orthogonal component vectors so that the
projection error is minimized

» Order of directions gives the i-th principal component
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Standardizing

» Scaling changes results of PCA — standardizing is recommend

» Center variable around mean u = 0 with standard deviation o = 1
Steps

Calculate mean and and standard deviation for x = [xy, ..., xn] "

1

H:r;Xi G‘¢42(Xi—ﬂ)2

Note: R uses internally denominator N — 1 instead of N

=

Transform variable (built-in via scale (x) in R)

Xi —
Xj < i—H
O

x <- scale(1:10)
c(mean (x), sd(x))

## [1] 0 1

Unsupervised Learning: Principal Component Analysis



Algorithm
» PCA maps x; onto a new basis via a linear combination
Zi = ¢17/X1 —f-(l)z?,'Xg—f—. . .+(P17an
n
with normalization ¥ (pﬁi -1

Jj=1
z; is the i-th principal component

v

v

®1i,-..,0n,; are the loadings of the /i-th principal component

v

In matrix notation, this gives

Z=9oX

v

Geometrically, ® is a rotation with stretching
— it also spans the directions of the principal components

Unsupervised Learning: Principal Component Analysis



Algorithm

» If x; is standardized, it has mean zero and also z;
» Hence, the variance of z; is
1N
2
Z j”
N =
» First loading vector searches a direction to maximize the variance
2 n
max Z = max— Z Z ¢j1Xj|  subjectto Y @7 =1
; =
» Numerically solved via a singular value decomposition

Unsupervised Learning: Principal Component Analysis



Singular Value Decomposition

Covariance matrix
» Covariance matrix X for the standardized data is given by

1 1
Y= NXTX & Li=—xx

» ¥ € RN*Nis symmetric with diagonals being the variance
» Goal: high variance but orthogonality, i. e. zero off-diagonal elements
Singular value decomposition

» Singular value decomposition of square matrix X gives
X=vzv'

» Vis a matrix with the eigenvectors of X (= VW = Iy)
» 2 is a diagonal matrix with the corresponding eigenvalues
» Thend =V

Unsupervised Learning: Principal Component Analysis



PCAin R

» PCA comes with various R packages but also via built-in routines
» Generating sample data

set .seed (0)
X <— rnorm(100)
y <= -0.8*x + 0.6*xrnorm(100)
d <- cbind(x, V)
» Standard deviation of each variable before and after scaling
apply(d, 2, sd)

## x v
## 0.8826502 0.8546230

d.scaled <- apply(d, 2, scale)
apply (d.scaled, 2, sd)

## x vy
# 011

Unsupervised Learning: Principal Component Analysis



PCAin R

» Perform PCA with scaling via prcomp (data, scale=TRUE)
pca <- prcomp (d, scale=TRUE)

» Mean and standard deviation used for scaling
pcaS$center # mean => equals apply(d, 2, mean)

#4# X y
## 0.02266845 -0.04546569

apply (d, 2, mean)

#4# x y

#4# 0.02266845 -0.04546569
pca$scale # standard deviation
#4# X y

## 0.8826502 0.8546230

Unsupervised Learning: Principal Component Analysis



PCAin R

» Principal component vectors — pick first k columns of interest

head (pca$x)

## PC1l PC2
#4# [1,] -1.4038205 0.58340965
## [2,] 0.1474487 -0.41157419
## [3,] -2.1955568 -0.10122525
## [4,] -1.7827003 0.21971105
## [5,] -1.1120171 -0.48398399
## [6,] 2.5950741 0.09139112

» PCA loadings

pca$rotation

## PC1 PC2
## x -0.7071068 0.7071068
## y 0.7071068 0.7071068

Unsupervised Learning: Principal Component Analysis



PCAin R

» Visualization of resulting principal component vectors

plot (pca$x, asp=1l) # ac rati o) axes e e
box () # reset ticks

axis (1, at=pca$x[, 1], labels=FALSE) # customized ticks

axis (2, at=pcas$x[, 2], labels=FALSE)

abline (h=0, col="red") # lst principal

abline (v=0, col="blue") #

PC2

-3 -2 -1 0 1 2 3
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PCAin R

» Plot of principal components on original scale in two dimensions

plot (x, vy)

rot <- pca$rotation

abline (0, rot[2,1]/rot[1l,1], col="red") £
abline (0, rot[1l,2]/rot[1,2], col="blue") #

Unsupervised Learning: Principal Component Analysis



PCAin R

» Standard deviation of principal components
pcas$sdev

## [1] 1.3191770 0.5096784

— Higher standard deviation in first components, lower in last
» Absolute and proportional variance explained

pca$sdev”?2

## [1] 1.7402279 0.2597721

pve <- pca$sdev”2 / sum(pca$sdev”2)
pve

## [1] 0.870114 0.129886

» Manual inspection is necessary to identify a suitable k when not
explicitly specified beforehand

Unsupervised Learning: Principal Component Analysis



PCAin R

Case study
» Reduce the dimensionality of the country dataset

» Goal is to retain a large portion of the variance, while still reducing the
number of dimensions
» Run PCA for country dataset

pca <- prcomp (countries, scale=TRUE)

» PCA loadings

pcaS$rotation

## PC1l PC2 PC3 PC4
## Per.capita.income 0.4650236 0.80152688 0.37236742 -0.05148053
## Literacy 0.4943729 -0.54941559 0.50335230 -0.44763206
## Infant.mortality -0.5346811 0.23163962 0.05703933 -0.81068226
## Life.expectancy 0.5034528 0.04516926 -0.77764097 -0.37385770

Unsupervised Learning: Principal Component Analysis



Proportion of Variance Explained

» Plot with cumulative proportion of variance explained

pve <- pca$sdev”2 / sum(pca$sdev”"2)

plot (cumsum(pve), xlab="i-th Principal Component",
ylab="Proportion of Variance Explained",
type="1", ylim=c(0, 1))
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— First principal component explains more than 80 % of the variance

Unsupervised Learning: Principal Component Analysis



PCA Example

» Density estimation reveals subgroups in one dimension

plot (density (pca$x) )
density.default(x = pca$x)
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N =76 Bandwidth = 0.1545
— One also observes three groups: a peak, as well as a tail and a
leading group

Unsupervised Learning: Principal Component Analysis



Outline

Wrap-Up

Jrespenised tesne: et ‘



Summary

» Unsupervised learning usually provides explanatory insights
» k-means clustering identifies subsets of similar points

v

Elbow plot determines a suitable number of clusters k
PCA reduces dimensions with a minimal amount of information loss

v

Commands in R
kmeans (d, k, nstart=n) k-means clusterin

prcomp (d, scale=TRUE) PCA with scaling
cumsum (x) Cumulative sums
apply (d, f) Apply function £ to all data points in d
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