Regularization Methods

Business Analytics Practice Winter Term 2015/16 Stefan Feuerriegel

Today's Lecture

Objectives

- Avoiding overfitting and improving model interpretability with the help of regularization methods
- 2 Understanding both ridge regression and the LASSO
- 3 Applying these methods for variable selection

Outline

- 1 Motivation for Regularization
- 2 Ridge Regression
- 3 LASSO
- 4 Comparison
- 5 Wrap-Up

Outline

- 1 Motivation for Regularization
- 2 Ridge Regression

3 LASSO

- 4 Comparison
- 5 Wrap-Up

Motivation for Regularization

- Linear models are frequently favorable due to their interpretability and often good predictive performance
- ► Yet, Ordinary Least Squares (OLS) estimation faces challenges

Challenges

- 1 Interpretability
 - OLS cannot distinguish variables with little or no influence
 - These variables distract from the relevant regressors
- 2 Overfitting
 - ► OLS works well when number of observation *n* is bigger than the number of predictors *p*, i. e. *n* ≫ *p*
 - ► If *n* ≈ *p*, overfitting results into low accuracy on unseen observations
 - ▶ If *n* < *p*, variance of estimates is infinite and OLS fails
 - As a remedy, one can identify only relevant variables by feature selection

Motivation for Regularization

Fitting techniques as alternatives to OLS

- Subset selection
 - Pick only a subset of all *p* variables which is assumed to be relevant
 - Estimate model with least squares using these reduced set of variables

Dimension reduction

- Project p predictors into a d-dimensional subspace with d < p
- ► These *d* features are used to fit a linear model by least squares
- Shrinkage methods, also named regularization
 - Fit model with all p variables
 - However, some coefficients are shrunken towards zero
 - Has the effect of reducing variance

Regularization Methods

- Fit linear models with least squares but impose constraints on the coefficients
- Instead, alternative formulations add a penalty in the OLS formula
- Best known are ridge regression and LASSO (least absolute shrinkage operator)
 - Ridge regression can shrink parameters close to zero
 - LASSO models can shrink some parameters exactly to zero
 - \rightarrow Performs implicit variable selection

Outline

- 1 Motivation for Regularization
- 2 Ridge Regression

3 LASSO

4 Comparison

5 Wrap-Up

Ridge Regression

OLS estimation

- Recall the OLS technique to estimate $\boldsymbol{\beta} = [\beta_0, \beta_1, \dots, \beta_p]^T$
- Minimizes the residual sum of squares (RSS)

$$\boldsymbol{\beta}_{\text{OLS}} = \min_{\boldsymbol{\beta}} RSS = \min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Ridge regression

Imposes a penalty on the size of the coefficients to reduce the variance of the estimates

$$\boldsymbol{\beta}_{\text{ridge}} = \min_{\boldsymbol{\beta}} \underbrace{\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2}_{\text{RSS}} + \underbrace{\lambda \sum_{j=1}^{p} \beta_j^2}_{\text{shrinkage penalty}}$$

Tuning Parameter

- Tuning parameter $\lambda > 0$ controls the relative impact of the penalty
- Penalty $\lambda \sum_{j=1}^{p} \beta_j^2$ has the effect of shrinking β_j towards zero
- If $\lambda \approx$ 0, penalty term has no effect (similar to OLS)
- Choice of λ is critical \rightarrow determined separately via cross validation

- Predicting salaries of U.S. baseball players based on game statistics
- Loading data Hitters

```
library(ISLR) # Hitters is located inside ISLR
data(Hitters)
Hitters <- na.omit(Hitters) # salary can be missing</pre>
```

Loading package glmnet which implements ridge regression

```
library(glmnet)
```

- Main function glmnet(x, y, alpha=0) requires dependent variable y and regressors x
- Function only processes numerical input, whereas categorical variables needs to be transformed via model.matrix(...)

Prepare variables

```
set.seed(0)
# drop 1st column with intercept (glmnet has already one)
x <- model.matrix(Salary ~ ., Hitters)[, -1]
y <- Hitters$Salary
train_idx <- sample(nrow(x), size=0.9*nrow(x))
x.train <- x[train_idx, ]
x.test <- x[-train_idx, ]
y.train <- y[train_idx]
y.test <- y[-train_idx]</pre>
```

Call ridge regression and automatically test a sequence of λ

```
lm.ridge <- glmnet(x.train, y.train, alpha=0)</pre>
```

• $coef(\ldots)$ retrieves coefficients belonging to each λ

dim(coef(lm.ridge))
[1] 20 100

 \rightarrow here: 100 models with different λ and each with 20 coefficients

► For example, the 50th model is as follows

```
lm.ridge$lambda[50] # tested lambda value
## [1] 2581.857
head(coef(lm.ridge)[,50]) # estimated coefficients
## (Intercept) AtBat Hits HmRun Runs
## 211.76123020 0.08903326 0.37913073 1.21041548 0.64115228
## RBI
## 0.59834311
```

Plot (model, xvar="lambda") investigates the influence of λ on the estimated coefficients for all variables

• Bottom axis gives $\ln \lambda$, top the number of non-zero coefficients

Plot: Lambda vs. Coefficients

- Manual effort necessary for pretty format
- As λ increases, coefficients shrink towards zero
- All other variables are shown in gray

- Optimal λ is determined via cross validation by minimizing the mean squared error from a prediction
- Usage is cv.glmnet(x, y, alpha=0)

cv.ridge <- cv.glmnet(x.train, y.train, alpha=0)</pre>

• Optimal λ and corresponding coefficients

```
cv.ridge$lambda.min
## [1] 29,68508
head(coef(cv.ridge, s="lambda.min"))
## 6 x 1 sparse Matrix of class "dqCMatrix"
##
## (Intercept) 109.4192279
## AtBat -0.6764771
              2.5974777
## Hits
## HmRun -0.7058689
               1.8565943
## Runs
               0.3434801
## RBT
```

Regularization: Ridge Regression

plot (cv.ridge)

19 19 19 19 19 19 19 19 19

Mean squared error first remains fairly constant and then rises sharply

Predict (model, newx=x, s=lambda) makes predictions for new data x and a specific λ

```
pred.ridge <- predict(cv.ridge, newx=x.test, s="lambda.min")
head(cbind(pred.ridge, y.test))</pre>
```

##		1	y.test
##	-Alan Ashby	390.1766	475.000
##	-Andre Dawson	1094.5741	500.000
##	-Andre Thornton	798.5886	1100.000
##	-Alan Trammell	893.8298	517.143
##	-Barry Bonds	518.9105	100.000
##	-Bob Dernier	353.4100	708.333

Mean absolute percentage error (MAPE)

```
mean(abs((y.test - pred.ridge)/y.test))
## [1] 0.6811053
```

Scaling of Estimates

OLS estimation

- Recall: least square estimates are scale equivalent
- Multiplying \mathbf{x}_j by $c \Rightarrow$ scaling of β_j by a factor 1/c

Ridge regression

- ► In contrast, coefficients in ridge regression can change substantially when scaling variable x_j due to penalty term
- Best is to use the following approach
 - 1 Scale variables via

$$\widetilde{x}_{ij} = rac{x_{ij}}{\sqrt{rac{1}{n}\sum\limits_{i=1}^{n}(x_{ij}-\overline{x}_j)^2}}$$

which divides by the standard deviation of x_j

2 Estimate the coefficients of ridge regression

glmnet scales accordingly, but returns coefficients on original scale

Bias-Variance Trade-Off

- Ridge regressions benefits from bias-variance trade-off
- $\blacktriangleright\,$ As λ increases, the flexibility of ridge regression coefficients decreases
 - \rightarrow This Decreases variance but increases bias

- Squared bias (in black), variance (blue), and error on test set (red)
- Dashed line is minimum possible mean squared error

Pros and Cons

Advantages

- ► Ridge regression can reduce the variance (with an increasing bias) → works best in situations where the OLS estimates have high variance
- ► Can improve predictive performance
- ▶ Works in situations where *p* < *n*
- Mathematically simple computations

Disadvantages

- Ridge regression is not able to shrink coefficients to exactly zero
- ► As a result, it cannot perform variable selection

 \Rightarrow Alternative: Least Absolute Shrinkage and Selection Operator (LASSO)

Outline

- 1 Motivation for Regularization
- 2 Ridge Regression

3 LASSO

4 Comparison

5 Wrap-Up

LASSO

Least Absolute Shrinkage and Selection Operator (LASSO)

- Ridge regression always includes *p* variables, but LASSO performs variables selection
- LASSO only changes the shrinkage penalty

$$\boldsymbol{\beta}_{\text{LASSO}} = \min_{\boldsymbol{\beta}} \underbrace{\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2}_{\text{RSS}} + \underbrace{\lambda \sum_{j=1}^{p} |\beta|_j}_{\text{shrinkage penalty}}$$

- ► Here, the LASSO uses the L_1 -norm $\|\boldsymbol{\beta}\|_1 = \sum_i |\beta_i|$
- This penalty allows coefficients to shrink towards exactly zero
- LASSO usually results into sparse models, that are easier to interpret

LASSO in R

Implemented in glmnet (x, y, alpha=1) as part of the glmnet package

```
lm.lasso <- glmnet(x.train, y.train, alpha=1)</pre>
```

Note: different value for alpha

▶ plot (...) shows how λ changes the estimated coefficients

► cv.glmnet(x, y, alpha=1) determines optimal λ via cross validation by minimizing the mean squared error from a prediction

```
set.seed(0)
cv.lasso <- cv.glmnet(x.train, y.train, alpha=1)</pre>
```

• Optimal λ and corresponding coefficients ("." are removed variables)

```
cv.lasso$lambda.min
## [1] 2.143503
head(coef(cv.lasso, s="lambda.min"))
## 6 x 1 sparse Matrix of class "dqCMatrix"
##
## (Intercept) 189.7212235
## AtBat -1.9921887
             6.6124279
## Hits
## HmRun
               0.6674432
## Runs
                .
## RBI
```

Total variables

```
nrow(coef(cv.lasso))
## [1] 20
```

Omitted variables

```
dimnames(coef(cv.lasso, s="lambda.min"))[[1]][which(
   coef(cv.lasso, s="lambda.min") == 0)]
## [1] "Runs" "RBI" "CAtBat" "CHits"
```

Included variables

```
dimnames(coef(cv.lasso, s="lambda.min"))[[1]][which(
   coef(cv.lasso, s="lambda.min") != 0)]
## [1] "(Intercept)" "AtBat" "Hits" "HmRun"
## [6] "Years" "CHmRun" "CRuns" "CRBI"
## [11] "LeagueN" "DivisionW" "PutOuts" "Assists"
## [16] "NewLeagueN"
```

▶ plot (cv.model) compares the means squared error across λ

plot (cv.lasso)

18 18 16 14 12 10 8 6 5 4

- ► Mean squared error first remains fairly constant and then rises sharply
- Top axis denotes the number of included model variables

LASSO in R

 predict (model, newx=x, s=lambda) makes predictions for new data x and a specific λ

pred.lasso <- predict(cv.lasso, newx=x.test, s="lambda.min")</pre>

Mean absolute percentage error (MAPE) of LASSO

```
mean(abs((y.test - pred.lasso)/y.test))
```

[1] 0.6328225

For comparison, error of ridge regression

```
## [1] 0.6811053
```

Outline

- 1 Motivation for Regularization
- 2 Ridge Regression

3 LASSO

4 Comparison

Problem Formulation

Both ridge regression and LASSO can be rewritten as

$$\boldsymbol{\beta}_{\mathsf{ridge}} = \min_{\boldsymbol{\beta}} \underbrace{\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2}_{\mathsf{RSS}} \qquad \text{s.t.} \qquad \sum_{j=1}^{p} \beta_j^2 \le \theta$$
$$\boldsymbol{\beta}_{\mathsf{LASSO}} = \min_{\boldsymbol{\beta}} \underbrace{\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2}_{\mathsf{RSS}} \qquad \text{s.t.} \qquad \sum_{j=1}^{p} |\beta_j| \le \theta$$

Outlook: both ridge regression and LASSO have Bayesian formulations

Variable Selection with LASSO

Comparison of previous constraints

Ridge regression

LASSO

- Objective function RSS as contours in red
- Constraints (blue) in 2 dimensions
- Intersection occurs at $\beta_1 = 0$ for LASSO

Case Study

Example

Comparison to OLS estimator

```
lm.ols <- lm(y.train ~ x.train)
# Workaround as predict.lm only accepts a data.frame
pred.ols <- predict(lm.ols, data.frame(x.train=I(x.test)))
mean(abs((y.test - pred.ols)/y.test))
## [1] 0.6352089</pre>
```

Comparison

OLS	Ridge regression	LASSO
0.64	0.68	0.63

Here: LASSO can outperform OLS with fewer predictors

Elastic Net

- Elastic net generalizes the ideas of both LASSO and ridge regression
- Combination of both penalties

$$\boldsymbol{\beta}_{\text{ElasticNet}} = \min_{\boldsymbol{\beta}} RSS + \lambda \left[\underbrace{(1-\alpha) \|\boldsymbol{\beta}\|_{2}^{2}/2}_{L_{2}\text{-penalty}} + \underbrace{\alpha \|\boldsymbol{\beta}\|_{1}}_{L_{1}\text{-penalty}} \right]$$

- L₁-penalty helps generating a sparse model
- L₂-part overcomes a strict selection
- Parameter α controls numerical stability
- $\alpha = 0.5$ tends to handle correlated variables as groups

Elastic Net in R

Example

- Test the elastic net with a sequence of values for a
- Report in-sample mean squared error

Elastic Net in R

Example (continued)

Report out-of-sample mean absolute prediction error

Outline

- 1 Motivation for Regularization
- 2 Ridge Regression

3 LASSO

- 4 Comparison
- 5 Wrap-Up

Summary

Regularization methods

- Regularization methods bring advantages beyond OLS
- Cross validation chooses tuning parameter λ
- LASSO performs variable selection
- Neither ridge regression nor LASSO dominates one another
- Cross validation finds the best approach for a given dataset

Outlook

- In practice, λ is scaled by rule of thumb to get better results
- Research has lately developed several variants and improvements
- ► Spike-and-slab regression can be a viable alternative for inferences

Further Readings

Package glmnet

- glmnet tutorial: http://web.stanford.edu/~hastie/
 glmnet/glmnet_alpha.html
- glmnet webinar: http://web.stanford.edu/~hastie/ TALKS/glmnet_webinar.pdf
 - ightarrow see Hastie's website for data and scripts

Background on methods

- Talk on elastic net: http: //web.stanford.edu/~hastie/TALKS/enet_talk.pdf
- Section 6.2 in the book "An Introduction to Statistical Learning"

Applications

Especially healthcare analytics, but also sports

ightarrow e.g. Groll, Schauberger & Tutz (2015): Prediction of major international soccer tournaments based on team-specific

regularized Poisson regression: An application to the FIFA World Cup 2014. In: Journal of Quantitiative Analysis in Sports. 10:2.