Business Analytics: Homework 11 (Resampling) Homework

Homework: Cross-Validation

a)

b)

c)

d)

Load the Wage dataset from the package ISLR as follows:
library (ISLR)

data (Wage)

x <- model.matrix (wage ~ ., Wage)

y <- WageS$wage

The additional call to model.matrix () is necessary in order to transform the factors into suitable

dummy variables.

Then split the dataset into a training (90 %) and a test set (10 %). Afterwards, estimate a linear model
on the training data that predicts the wage given all other variables. Calculate the the mean squared

error (MSE) between the predicted values and the actual values on the test set.

How does the seed value for the random number affect the outcome? For this purpose, use initial
seeds of 57 and 283.

Use the code from the previous exercise and implement the Leave-One-Out Cross-Validation (LOOCYV)

manually. What is its mean squared error now? What is the advantage of the LOOCYV approach?

Note: This may take a while to compute.

Once again, use the code from the previous exercise and implement k-fold Cross-Validation. Calculate

the mean squared error with £ = 10 and k = 5 folds. Do they differ severely?

Hint: there is a function split that divides a dataset into groups.

Use the Aut o dataset from the library ISLR and predict the mpg variable using horsepower using
a polynomial model. Repeat the analysis for M = 10 different random splits. Plot the different MSE

curves across degrees p = 1, ..., 10 of the polynomial.
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Homework: Model Tuning

a)

Load the GermanCredit dataset from the caret package. Use this package also to train a genera-
lized additive (GAM) model with splines (method="gamSpline"). The model should predict the
credit class given all other variables. Train the model using the values from 1 to 10 for the degrees of
freedom (df) of the GAM model.

Furthermore, the trainControl () function accepts an argument repeat which repeats the tu-
ning process multiple time as means to get a bootstrapped prediction. It then automatically returns
the mean value of the predictions. Use 3 repetitions and, as a prerequisite, also change its method

parameter (method="boot").

Plot how the tuning parameters affect the model performance. What is the best tuning parameter?
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Homework: Bootstrapping

a)

b)

c)

d)

e)

f)

Load the Carseats dataset from the library ISLR. Compute the mean of the Sales variable. In
a next step, we want to understand the potential distribution of the mean. For this purpose, create 20
boostrapped replicates of the data. Then apply the mean function to each boostrapped replicate. What
is the range of the boostrapped mean values?

Repeat the above analysis by using boot (). In addition, what are the confidence intervals and how
does the distribution look like?

Given is the following data for which we want to determine confidence intervals.

set.seed (0)
x <- rexp(200)

»  First of all, compute the 5 % confidence intervals assuming a normal distribution with unknown

variance. For this purpose, one can use the formula

o
S ta/Q%

for observations x1,...,x, with mean p and standard deviation o given a a % confidence
interval. The variable ¢, /5 denotes the 100 (1 — «/2)-th percentile of the Student-¢ distribution
with n — 1 degrees of freedom. Its values can be found with gt (1 - alpha/2, df=n-1).

Thereby, one can quantify the uncertainty of a point estimate of the population mean.
*  Why shouldn’t we rely upon the above formula for the given data?

* Instead, compute the confidence intervals using bootstrapping?

Given is above data for which we want to determine confidence intervals. How does the mean esti-
mate from the bootstrap and the width of the 95 % change when increasing the number of bootstrap
replications B? Test values B = 50, 100, 500, 1000, 5000, 10000.

Use the dataset GermanCredit in order to estimate a logit model. The credit class should be ex-

plained in terms of age and gender. Bootstrap the coefficients.

The boostrap resampling picks some values more than once, and others not at all. We want to under-
stand now the average behavior. How many observations of a dataset with N = 400 entries are not
selected in a bootstrapped sample? How does it change if the dataset contains only N = 10 entries?

In a next step, we want to understand the asymptotic behavior. Derive a mathematical function that
gives the fraction of non-selected entries of a bootstrapped replicate given the size of the data set.

How many unique observations are in a bootstrapped sample when N — oco?
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g9)

h)

i)

When datasets are subject to clusters and groups, it is often necessary to ensure that these subgroups
appear with same frequency. Consider for instance the example where we want to estimate the average
height of persons.

Our original dataset might be imbalanced, for instance, containing more observations of males than of
females. However, we want to estimate the average height independent of gender. Hence, resampling
needs to pick male and female observations with same likelihood, no matter what their true frequency
in the dataset is.

The above process is named stratified resampling.

In this question, load the following dataset and estimate the mean height. How does the results change
when incorporating stratified resampling?

set.seed (0)

n_male <- 630
n_female <- 170

d <- data.frame (height=c(rnorm(n_male, 185, 15), rnorm(n_female, 175, 10)),

r=factor (rep(c("m", "f"), c(n_male, n_female))))

mean (dSheight)
## [1] 182.7314

boxplot (height ~ gender, d)
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Modify your code from the previous exercise. Use now the bayesboot package to calculate the
mean of each group instead. T

Furthermore, use the as .bayesboot function to calculate the posterior of the differences to receive

abayesboot object, which can be plotted using the plot function.

We now use three small datasets which we resample to infer the distribution of the mean:
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set.seed (0)

height2 <- rnorm(2, 180, 10)
height4 <- rnorm(4, 180, 10)
height8 <- rnorm(8, 180, 10)

Visualize the distributions as histograms using the non-parametric and the Bayesian bootstrap. How
do they differ?

Lastly, find and read materials that explain the Bayesian bootstrap. How is it different from the fre-
quentest variant of the Bayesian that we used before? For instance, study the following blog post:

http://sumsar.net/blog/2015/04/the-non-parametric-bootstrap-as—a-bayesian—-model/.

3
J)  Proof the mathematical solution for the risk minimization of a portfolio. That is
- U%»—([XY
T 02— 20xy
X Y XY
which minimizes the expression Var(aX + (1 — a)Y).
3

K)  When the dataset is small, one sometimes utilizes a two-staged cross-validation. Implement this pro-
cess for the Carseats dataset from the caret package in order to predict the sales. Use &k = 10
splits and a linear model.

For simplicity, we remove the variables that are factors:

data (Carseats)

x <- subset (Carseats, select=-c(Sales, ShelvelLoc, Urban, US))

y <- Carseats$Sales
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