Resampling Methods

Business Analytics Practice Winter Term 2015/16 Stefan Feuerriegel

Today's Lecture

Objectives

- 1 Distinguishing between explanatory and predictive power
- 2 Learning the reasoning behind the validation set approach
- 3 Understanding cross-validation and the bootstrap for resampling
- 4 Tuning models to improve the predictive performance

Outline

- 1 Validation Set Approach
- 2 Cross-Validation
- 3 Model Tuning
- 4 Bootstrapping
- 5 Wrap-Up

Outline

1 Validation Set Approach

- 2 Cross-Validation
- 3 Model Tuning
- 4 Bootstrapping
- 5 Wrap-Up

Training and Test Set

- Datasets in machine learning are usually split into disjunct sets for training and testing
 - **1 Training set** is used to fit and calibrate the model parameters
 - 2 Test set is used to measure the predictive performance on unseen data
- Each measures a different error, i. e. the training and test error
- ► Rule-of-thumb: 80 % for training and 20 % for testing (or 90 % vs. 10 %)

Training vs. Test Error

- Training error results from applying the model to the training data
- ► Test error is the average error when predicting on unseen observations
- ► Alternative terms refer to in-sample and out-of-sample performance
- The training error underestimates the test error, since it is usually substantially smaller

Training vs. Test Error

Remedies to Overfitting

- 1 Using a large training set
 - Easiest solution
 - However, available is often limited
- 2 Mathematical penalties to prefer simpler models
 - Information criteria (e.g. AIC, BIC) find a trade-off between fit and model complexity
 - ► For linear models, regularization shrinks coefficients towards zero
 - Pruning of decision trees limits their size
- 3 Common alternative: use a third set, the hold-out or validation set

Validation Set

Three-fold split into training, validation and test set

- 1 Fit model of different complexity to training data
- 2 Select model based on performance on unseen data from the validation set
- 3 Measure predictive performance based on the test set

Rule-of-thumb: 60 % for training, 20 % for validation and 20 % for testing

Validation Set

Model complexity

Motivation for Resampling

- Often only limited data is available for measuring performance
- Sometimes performance is subject to the (random) split
 - If splitting is repeated randomly, there might be a high variability across the results
 - Especially relevant for time-dependent or ordered data
 - Making splits random can be of importance here
- Model performance is often inferior the less data is used

Resampling

Idea

- Repeatedly draw sub-samples from the given data set
- Then use these splits to fit and assess the model

Common methods

- 1 Cross-validation (CV)
 - Improved approach for estimating the test error
 - k-fold cross-validation
 - Special case: leave-one-out cross-validation (LOOCV)
- 2 Bootstrap
 - Quantify the uncertainty of an estimator or method
 - Returns standard errors or confidence intervals for a coefficient

Outline

- 1 Validation Set Approach
- 2 Cross-Validation
 - 3 Model Tuning
- 4 Bootstrapping
- 5 Wrap-Up

k-Fold Cross-Validation

- Randomly divide dataset into k equal-sized subsamples (i. e.folds)
 - 1 Fit data using k 1 folds
 - 2 Make predictions with the left-out *k*-th fold and measure the performance
 - 3 Repeat this k times such that each fold becomes a validation set
- Typical choice is k = 5 or k = 10

k-Fold Cross-Validation

Algorithm

Given pre-defined k and a dataset with n observations

- 1 Randomly divide data into *k*-folds C_1, \ldots, C_k
- 2 Let n_i be the number of observations in C_i $\Rightarrow n_i \approx \frac{n}{k}$ (or equal if n is multiple of k)
- **3** For all i = 1, ..., k, compute the predictive performance *perf_i* on fold *C_i* and using the remaining folds for fitting
- 4 Compute the average performance

$$CV_k = \sum_{i=1}^k \frac{n_i}{n} perf_i$$

Cross-Validation

Example: average error on validation sets from 10-fold cross-validation across different random splits

 \rightarrow Variance of root mean squared errors on validation set decreased

Leave-One-Out Cross-Validation

- Leave-one-out cross-validation (LOOCV) is a special case with k = n
 - 1 n-1 variables are used for training
 - 2 The *n*-th variable is used as a validation set
- ► Has a low bias since n-1 observations are used for training
- Avoids randomness, but with high computational costs
- ► Estimated models are highly correlated ⇒ average has a high variance
- In practice, better choice is k = 5 or k = 10

Outline

- 1 Validation Set Approach
- 2 Cross-Validation

3 Model Tuning

4 Bootstrapping

5 Wrap-Up

Model tuning

Problem statement

- Most classifiers have parameters that influence their performance
- Variable selection can additionally overfitting
- How to choose the best parameters and variables?

Examples

Classifier	Parameters
k-nearest neighbor	Neighbors <i>k</i>
Polynomial regression	Order of polynomial
Ridge regression, LASSO	Parameter λ
Support vector machine	Cost parameter C, choice of kernel,
Random forest	Number of trees, depth,

Solution: use cross-validation during training to tune parameters

Model Tuning

Algorithm

Split dataset into training (incl. validation) and test set Define sets of model parameters to test

for each parameter set p do

for each cross-validation split i do

Fit model on the remaining splits

Make prediction on this split i

Measure performance

end

Calculate the average performance across all splits

end

Determine the optimal parameter set p^* Fit the final with p^* to all training (incl. validation) samples Measure performance on test set

Model Tuning

Example: predictive performance of polynomial model and *k*-nearest neighbors

Example with package caret

Load package caret

```
library(caret)
```

Split dataset into training and testing

Define configuration for 10-fold cross-validation

```
fitControl <- trainControl("cv", number=10)</pre>
```

Run random forest with default parameter tuning

```
set.seed(0)
rf tuned <- train(Class ~ ., data=GermanCredit,
                   method="rf", trControl=fitControl)
rf tuned
## Bandom Forest
##
## 1000 samples
## 61 predictor
## 2 classes: 'Bad', 'Good'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 900, 900, 900, 900, 900, 900, ...
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa
## 2 0.717 0.07864541
## 31 0.763 0.39202731
   61 0.766 0.40236369
##
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 61.
```

Note: mtry is the number of variables randomly sampled at each split in the tree

plot (rf_tuned)

Plot performance across model parameters

Predictive performance on test set

```
pred <- predict(rf_tuned, newdata=testing)</pre>
confusionMatrix (pred, testing$Class)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Bad Good
##
         Bad 60 0
##
         Good 0 140
##
##
                  Accuracy : 1
                     95% CI : (0.9817, 1)
##
##
       No Information Rate : 0.7
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 1
##
   Monemar's Test P-Value : NA
##
##
               Sensitivity : 1.0
##
               Specificity : 1.0
##
            Pos Pred Value : 1.0
##
            Neg Pred Value : 1.0
##
                Prevalence : 0.3
##
            Detection Rate : 0.3
##
      Detection Prevalence : 0.3
##
         Balanced Accuracy : 1.0
##
##
          'Positive' Class : Bad
##
```

Practice Recommendations for caret

- Instead of "cv", one often uses "repeatedcv" which repeats the training procedure several times to avoid non-beneficial splits
- set.seed(...) is called prior to the train(...) function to make results reproducible
- ► By default, caret tests three values for each parameter
- Alternative searches for parameters can be inserted via argument tuneGrid
- See caret for details
 - Vignette: https://cran.r-project.org/web/packages/ caret/vignettes/caret.pdf
 - Manual: https://topepo.github.io/caret/

Outline

- 1 Validation Set Approach
- 2 Cross-Validation
- 3 Model Tuning
- 4 Bootstrapping
- 5 Wrap-Up

The Bootstrap

- The bootstrap quantifies the uncertainty of an estimator or a machine learning method
 - 1 Generate new samples and thus augment the dataset
 - 2 In practice not possible, but one can mimic this process by constructing artifical data
 - 3 Approximate the distribution of a desired statistics
 - \rightarrow e.g. of coefficient in least squares
 - In practice, it returns standard errors or confidence intervals
 - Easily applicable, as the model or estimation is not changed but only repeated multiple times

Bootstrapping

The bootstrap creates bootstrap samples by randomly collecting observations from the original dataset with replacement

The overlap between the original dataset and a bootstrap sample will be around two-thirds, one-third are duplicates

Bootstrapping

Algorithm

- Repeat the following steps for i = 1, ..., B
 - **1** Randomly sample *n* observations with replacements from the original dataset in order to produce a bootstrap dataset Z_i
 - \rightarrow Implies that the same observation can occur more than once
 - **2** Estimate statistic α_i with new the bootstrap sample Z_i
- Calculate standard error of the bootstrap estimate

$$SE_B = \sqrt{\frac{1}{B-1}\sum_{i=1}^{B} (\alpha_i - \overline{\alpha})^2}$$

Implementation

1 Load package boot

library(boot)

2 Implement a function f that computes the statistic of interest

```
f <- function(data, indices) {
    # select subset with bootstrap samples
    bootstrap_sample <- data[indices, ]
    # estimate model
    model <- estimate(boostrap_sample)
    # extract statistic
    out <- ...
    return(out)
}</pre>
```

3 Call the function boot (data, f, R) to bootstrap R replicates

Example: standard errors of median

Create data

```
set.seed(0) # initialize seed for random number generator
data <- round(rnorm(100, mean=3, sd=5))
head(data)
## [1] 9 1 10 9 5 -5</pre>
```

Create function to extract statistic

```
f <- function(data, indices) {
   return(median(data[indices]))
}</pre>
```

• Bootstrapping with B = 100 replicates

```
b <- boot(data, f, 100)
```

b

```
## Bootstrap Statistics :
## original bias std. error
## t1* 3 -0.1 0.662868
```

Bootstrap Percentiles

Computed confidence intervals are named bootstrap percentiles

Calculated via boot.ci(...)

```
boot.ci(b, type="basic")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 100 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = b, type = "basic")
##
## Intervals :
## Level Basic
## 95% ( 2, 4 )
## Calculations and Intervals on Original Scale
## Some basic intervals may be unstable
```

Example: standard errors in least squares

Create function to extract statistic

```
f <- function(data, indices) {
   bootstrap_sample <- data[indices, ]
   m <- lm(mpg ~ horsepower, data=bootstrap_sample)
   return(coef(m))
}</pre>
```

• Bootstrapping with B = 100 replicates

```
library(ISLR)
```

```
data(Auto)
b <- boot(Auto, f, 100)</pre>
```

b

```
## Bootstrap Statistics :
    ## original bias std. error
    ## t1* 39.9358610 4.214671e-03 0.797487230
Resampline#Boots&apping 0.1578447 1.184515e-05 0.00000
```

Bootstrap percentiles (argument index picks a variable of interest)

```
boot.ci(b, type="basic", index=2)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 100 bootstrap replicates
##
## CALL :
## CALL :
## boot.ci(boot.out = b, type = "basic", index = 2)
##
## Intervals :
## Level Basic
## Jos% (-0.1726, -0.1449)
## Calculations and Intervals on Original Scale
## Some basic intervals may be unstable
```

Comparison to least squares

```
coef(summary(lm(mpg ~ horsepower, data=Auto)))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.9358610 0.717498656 55.65984 1.220362e-187
## horsepower -0.1578447 0.006445501 -24.48914 7.031989e-81
```

Example: risk minimization of portfolio

- ► Given a fixed amount of money and two assets with returns X and Y
- Invest a share α in X and 1α in Y
- Aim: find the allocation that minimizes the total risk

$$\min_{\alpha} \operatorname{Var}(\alpha X + (1 - \alpha)Y)$$

Mathematical solution is

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

for which one can estimate $\sigma_{\chi}^2,\,\sigma_{Y}^2$ and $\sigma_{\chi Y}^2$ from historic returns

► Historic returns of X and Y in dataset Portfolio

Define function for extraction

```
f_alpha <- function(data, index) {
    X <- data$X[index]
    Y <- data$Y[index]
    return((var(Y)-cov(X,Y)) / (var(X)+var(Y)-2*cov(X,Y)))
}</pre>
```

• Compute optimal α from historic returns

```
f_alpha (Portfolio, 1:nrow (Portfolio))
```

```
Resampling: Bootstrapping . 5758321
```

• Run bootstrap (note: true value is $\alpha = 0.6$)

```
b <- boot (Portfolio, f_alpha, R=1000)</pre>
## Bootstrap Statistics :
##
        original bias std. error
## t1* 0.5758321 0.006197081 0.08594182
```

• Visualize distribution of α as histogram

Histogram of t

plot (b)

Advanced Use of Boostrapping

- Stratified bootstrap controls how to pick observations during resampling
 - Ensures certain relationships or group memberships
 - For instance, time series can be split in different chunks of consecutive observations which are then sampled

Bayesian bootstrap

- Produces similar results
- But makes different/explicit assumptions regarding distributions
- Package bayesboot
- Random forest is a bootstrap of individual decision trees

Outline

- 1 Validation Set Approach
- 2 Cross-Validation
- 3 Model Tuning
- 4 Bootstrapping
- 5 Wrap-Up

Summary

- Resampling methods facilitate statistical inferences based on drawing new observations from an initial sample
 - Cross-validation: is an improved strategy to estimate the test error
 - Bootstrap quantifies the uncertainty of model parameters
- Especially useful if only a few observations are available
- Disadvantage: high computation time
- Some disciplines even use two-stage cross-validation such that each observation contributes to the test set

