
Resampling Methods
Business Analytics Practice

Winter Term 2015/16
Stefan Feuerriegel

Today’s Lecture

Objectives

1 Distinguishing between explanatory and predictive power

2 Learning the reasoning behind the validation set approach

3 Understanding cross-validation and the bootstrap for resampling

4 Tuning models to improve the predictive performance

2Resampling

Outline

1 Validation Set Approach

2 Cross-Validation

3 Model Tuning

4 Bootstrapping

5 Wrap-Up

3Resampling

Outline

1 Validation Set Approach

2 Cross-Validation

3 Model Tuning

4 Bootstrapping

5 Wrap-Up

4Resampling: Validation Set Approach

Training and Test Set

I Datasets in machine learning are usually split into disjunct sets for
training and testing

1 Training set is used to fit and calibrate the model parameters
2 Test set is used to measure the predictive performance on unseen data

I Each measures a different error, i. e. the training and test error

I Rule-of-thumb: 80 % for training and 20 % for testing (or 90 % vs. 10 %)

Train Test

Model Result

5Resampling: Validation Set Approach

Training vs. Test Error

I Training error results from applying the model to the training data

I Test error is the average error when predicting on unseen observations

I Alternative terms refer to in-sample and out-of-sample performance

I The training error underestimates the test error, since it is usually
substantially smaller

6Resampling: Validation Set Approach

Training vs. Test Error

Training set

Test set

High bias

Low variance

Low bias

High variance

Low HighModel complexity

P
re

d
ic

ti
o

n
 e

rr
o
r

7Resampling: Validation Set Approach

Remedies to Overfitting

1 Using a large training set
I Easiest solution
I However, available is often limited

2 Mathematical penalties to prefer simpler models
I Information criteria (e. g. AIC, BIC) find a trade-off between fit and

model complexity
I For linear models, regularization shrinks coefficients towards zero
I Pruning of decision trees limits their size

3 Common alternative: use a third set, the hold-out or validation set

8Resampling: Validation Set Approach

Validation Set

Three-fold split into training, validation and test set

1 Fit model of different complexity to training data

2 Select model based on performance on unseen data from the
validation set

3 Measure predictive performance based on the test set

Rule-of-thumb: 60 % for training, 20 % for validation and 20 % for testing

Original set

Training set

Training set

Test set

Test setValidation

9Resampling: Validation Set Approach

Validation Set

Prediction

error

Selected model

Test set

Validation

set
Training set

Model complexity

10Resampling: Validation Set Approach

Motivation for Resampling

I Often only limited data is available for measuring performance
I Sometimes performance is subject to the (random) split

I If splitting is repeated randomly, there might be a high variability across
the results

I Especially relevant for time-dependent or ordered data
I Making splits random can be of importance here

I Model performance is often inferior the less data is used

Example: Test error across different train/test splits

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Degree of polynomial

M
ea

n
sq

ua
re

d
er

ro
r

11Resampling: Validation Set Approach

Resampling

Idea
I Repeatedly draw sub-samples from the given data set

I Then use these splits to fit and assess the model

Common methods
1 Cross-validation (CV)

I Improved approach for estimating the test error
I k -fold cross-validation
I Special case: leave-one-out cross-validation (LOOCV)

2 Bootstrap
I Quantify the uncertainty of an estimator or method
I Returns standard errors or confidence intervals for a coefficient

12Resampling: Validation Set Approach

Outline

1 Validation Set Approach

2 Cross-Validation

3 Model Tuning

4 Bootstrapping

5 Wrap-Up

13Resampling: Cross-Validation

k -Fold Cross-Validation

I Randomly divide dataset into k equal-sized subsamples (i. e.folds)
1 Fit data using k−1 folds
2 Make predictions with the left-out k -th fold and measure the

performance
3 Repeat this k times such that each fold becomes a validation set

I Typical choice is k = 5 or k = 10

Validation Training Training Training Training

Training Validation Training Training Training

Training Training Validation Training Training

Training Training Training Validation Training

Training Training Training Training Validation

Split 1

Split 2

Split 3

Split 4

Split 5

Original dataset

Test

Test

Test

Test

Test

Example with k = 5
14Resampling: Cross-Validation

k -Fold Cross-Validation

Algorithm
Given pre-defined k and a dataset with n observations

1 Randomly divide data into k -folds C1, . . . ,Ck

2 Let ni be the number of observations in Ci

⇒ ni ≈ n
k (or equal if n is multiple of k)

3 For all i = 1, . . . ,k , compute the predictive performance perfi on fold Ci

and using the remaining folds for fitting

4 Compute the average performance

CVk =
k

∑
i=1

ni

n
perfi

15Resampling: Cross-Validation

Cross-Validation
Example: average error on validation sets from 10-fold cross-validation
across different random splits

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Degree of polynomial

M
ea

n
sq

ua
re

d
er

ro
r

→ Variance of root mean squared errors on validation set decreased

16Resampling: Cross-Validation

Leave-One-Out Cross-Validation

I Leave-one-out cross-validation (LOOCV) is a special case with k = n
1 n−1 variables are used for training
2 The n-th variable is used as a validation set

I Has a low bias since n−1 observations are used for training
I Avoids randomness, but with high computational costs
I Estimated models are highly correlated⇒ average has a high variance
I In practice, better choice is k = 5 or k = 10

n1 2 3 ...

n1 2 3 ...

n1 2 3 ...

n1 2 3 ...

n1 2 3 ...

...

Iteration 1

Iteration 2

Iteration 3

Iteration n

Original

17Resampling: Cross-Validation

Outline

1 Validation Set Approach

2 Cross-Validation

3 Model Tuning

4 Bootstrapping

5 Wrap-Up

18Resampling: Model Tuning

Model tuning

Problem statement
I Most classifiers have parameters that influence their performance

I Variable selection can additionally overfitting

I How to choose the best parameters and variables?

Examples
Classifier Parameters

k -nearest neighbor Neighbors k
Polynomial regression Order of polynomial
Ridge regression, LASSO Parameter λ

Support vector machine Cost parameter C, choice of kernel, . . .
Random forest Number of trees, depth, . . .

Solution: use cross-validation during training to tune parameters

19Resampling: Model Tuning

Model Tuning

Algorithm

Split dataset into training (incl. validation) and test set
Define sets of model parameters to test
for each parameter set p do

for each cross-validation split i do
Fit model on the remaining splits
Make prediction on this split i
Measure performance

end
Calculate the average performance across all splits

end
Determine the optimal parameter set p∗

Fit the final with p∗ to all training (incl. validation) samples
Measure performance on test set

20Resampling: Model Tuning

Model Tuning

Example: predictive performance of polynomial model and k -nearest
neighbors

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9

Degree of polynomial

E
rr

or
 (

=
 1

 −
 a

cc
ur

ac
y)

Training set

Test set

Validation set

0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

12510100

1/k

Nearest neighbors k

21Resampling: Model Tuning

Model Tuning with caret

Example with package caret
I Load package caret

library(caret)

I Split dataset into training and testing

set.seed(0)
data(GermanCredit)
inTrain <- createDataPartition(GermanCredit$Class, p=0.8,

list=FALSE)
training <- GermanCredit[inTrain,]
testing <- GermanCredit[-inTrain,]

I Define configuration for 10-fold cross-validation

fitControl <- trainControl("cv", number=10)

22Resampling: Model Tuning

Model Tuning with caret
I Run random forest with default parameter tuning

set.seed(0)
rf_tuned <- train(Class ~ ., data=GermanCredit,

method="rf", trControl=fitControl)
rf_tuned

Random Forest
##
1000 samples
61 predictor
2 classes: 'Bad', 'Good'
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 900, 900, 900, 900, 900, 900, ...
Resampling results across tuning parameters:
##
mtry Accuracy Kappa
2 0.717 0.07864541
31 0.763 0.39202731
61 0.766 0.40236369
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 61.

Note: mtry is the number of variables randomly sampled at each split
in the tree

23Resampling: Model Tuning

Model Tuning with caret

I Plot performance across model parameters

plot(rf_tuned)

#Randomly Selected Predictors

A
cc

ur
ac

y
(C

ro
ss

−
V

al
id

at
io

n)

0.72

0.73

0.74

0.75

0.76

0 10 20 30 40 50 60

●

●
●

24Resampling: Model Tuning

Model Tuning with caret
I Predictive performance on test set

pred <- predict(rf_tuned, newdata=testing)
confusionMatrix(pred, testing$Class)

Confusion Matrix and Statistics
##
Reference
Prediction Bad Good
Bad 60 0
Good 0 140
##
Accuracy : 1
95% CI : (0.9817, 1)
No Information Rate : 0.7
P-Value [Acc > NIR] : < 2.2e-16
##
Kappa : 1
Mcnemar's Test P-Value : NA
##
Sensitivity : 1.0
Specificity : 1.0
Pos Pred Value : 1.0
Neg Pred Value : 1.0
Prevalence : 0.3
Detection Rate : 0.3
Detection Prevalence : 0.3
Balanced Accuracy : 1.0
##
'Positive' Class : Bad
##

25Resampling: Model Tuning

Practice Recommendations for caret

I Instead of "cv", one often uses "repeatedcv" which repeats the
training procedure several times to avoid non-beneficial splits

I set.seed(...) is called prior to the train(...) function to
make results reproducible

I By default, caret tests three values for each parameter

I Alternative searches for parameters can be inserted via argument
tuneGrid

I See caret for details

I Vignette: https://cran.r-project.org/web/packages/
caret/vignettes/caret.pdf

I Manual: https://topepo.github.io/caret/

26Resampling: Model Tuning

https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf
https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf
https://topepo.github.io/caret/

Outline

1 Validation Set Approach

2 Cross-Validation

3 Model Tuning

4 Bootstrapping

5 Wrap-Up

27Resampling: Bootstrapping

The Bootstrap

I The bootstrap quantifies the uncertainty of an estimator or a machine
learning method

1 Generate new samples and thus augment the dataset
2 In practice not possible, but one can mimic this process by constructing

artifical data
3 Approximate the distribution of a desired statistics
→ e. g. of coefficient in least squares

I In practice, it returns standard errors
or confidence intervals

I Easily applicable, as the model or
estimation is not changed but only
repeated multiple times

28Resampling: Bootstrapping

Bootstrapping

The bootstrap creates bootstrap samples by randomly collecting
observations from the original dataset with replacement

Obs. X Y

1

2

3

4.3 2.4

2.1 1.1

5.3 2.8

Obs. X Y

3

1

3

5.3 2.8

4.3 2.4

5.3 2.8

Obs. X Y

2

2

1

2.1 1.1

2.1 1.1

4.3 2.4

Orig inal data Z ZB

Z1

αB

α1

...

...

The overlap between the original dataset and a bootstrap sample will be
around two-thirds, one-third are duplicates

29Resampling: Bootstrapping

Bootstrapping

Algorithm
I Repeat the following steps for i = 1, . . . ,B

1 Randomly sample n observations with replacements from the original
dataset in order to produce a bootstrap dataset Zi

→ Implies that the same observation can occur more than once
2 Estimate statistic αi with new the bootstrap sample Zi

I Calculate standard error of the bootstrap estimate

SEB =

√
1

B−1

B

∑
i=1

(αi −α)2

30Resampling: Bootstrapping

Bootstrap in R

Implementation
1 Load package boot

library(boot)

2 Implement a function f that computes the statistic of interest

f <- function(data, indices) {
select subset with bootstrap samples
bootstrap_sample <- data[indices,]

estimate model
model <- estimate(boostrap_sample)

extract statistic
out <- ...

return(out)
}

3 Call the function boot(data, f, R) to bootstrap R replicates

31Resampling: Bootstrapping

Bootstrap in R

Example: standard errors of median
I Create data

set.seed(0) # initialize seed for random number generator
data <- round(rnorm(100, mean=3, sd=5))
head(data)

[1] 9 1 10 9 5 -5

I Create function to extract statistic
f <- function(data, indices) {

return(median(data[indices]))
}

I Bootstrapping with B = 100 replicates
b <- boot(data, f, 100)

b

Bootstrap Statistics :
original bias std. error
t1* 3 -0.1 0.662868

32Resampling: Bootstrapping

Bootstrap Percentiles

Computed confidence intervals are named bootstrap percentiles
I Calculated via boot.ci(...)

boot.ci(b, type="basic")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 100 bootstrap replicates
##
CALL :
boot.ci(boot.out = b, type = "basic")
##
Intervals :
Level Basic
95% (2, 4)
Calculations and Intervals on Original Scale
Some basic intervals may be unstable

33Resampling: Bootstrapping

Bootstrap in R

Example: standard errors in least squares
I Create function to extract statistic

f <- function(data, indices) {
bootstrap_sample <- data[indices,]
m <- lm(mpg ~ horsepower, data=bootstrap_sample)
return(coef(m))

}

I Bootstrapping with B = 100 replicates

library(ISLR)

data(Auto)
b <- boot(Auto, f, 100)

b

Bootstrap Statistics :
original bias std. error
t1* 39.9358610 4.214671e-03 0.797487230
t2* -0.1578447 1.184515e-05 0.006960595 34Resampling: Bootstrapping

Bootstrap in R

I Bootstrap percentiles (argument index picks a variable of interest)
boot.ci(b, type="basic", index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 100 bootstrap replicates
##
CALL :
boot.ci(boot.out = b, type = "basic", index = 2)
##
Intervals :
Level Basic
95% (-0.1726, -0.1449)
Calculations and Intervals on Original Scale
Some basic intervals may be unstable

I Comparison to least squares
coef(summary(lm(mpg ~ horsepower, data=Auto)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.9358610 0.717498656 55.65984 1.220362e-187
horsepower -0.1578447 0.006445501 -24.48914 7.031989e-81

35Resampling: Bootstrapping

Bootstrap in R

Example: risk minimization of portfolio

I Given a fixed amount of money and two assets with returns X and Y

I Invest a share α in X and 1−α in Y

I Aim: find the allocation that minimizes the total risk

min
α

Var(αX +(1−α)Y)

I Mathematical solution is

α =
σ2

Y −σXY

σ2
X +σ2

Y −2σXY

for which one can estimate σ2
X , σ2

Y and σ2
XY from historic returns

36Resampling: Bootstrapping

Bootstrap in R

I Historic returns of X and Y in dataset Portfolio

data(Portfolio)
Portfolio[1:4,]

X Y
1 -0.8952509 -0.2349235
2 -1.5624543 -0.8851760
3 -0.4170899 0.2718880
4 1.0443557 -0.7341975

I Define function for extraction

f_alpha <- function(data, index) {
X <- data$X[index]
Y <- data$Y[index]
return((var(Y)-cov(X,Y)) / (var(X)+var(Y)-2*cov(X,Y)))

}

I Compute optimal α from historic returns

f_alpha(Portfolio, 1:nrow(Portfolio))

[1] 0.5758321 37Resampling: Bootstrapping

Bootstrap in R
I Run bootstrap (note: true value is α = 0.6)

b <- boot(Portfolio, f_alpha, R=1000)

Bootstrap Statistics :
original bias std. error
t1* 0.5758321 0.006197081 0.08594182

I Visualize distribution of α as histogram
plot(b)

Histogram of t

t*

D
en

si
ty

0.3 0.5 0.7 0.9

0
1

2
3

4
5

●●
●
●●●

●●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●

●●
●●
●●
●●●
●●●
●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●

●●
●

●

−3 −1 0 1 2 3

0.
3

0.
5

0.
7

Quantiles of Standard Normal

t*

38Resampling: Bootstrapping

Advanced Use of Boostrapping

I Stratified bootstrap controls how to pick observations during
resampling

I Ensures certain relationships or group memberships
I For instance, time series can be split in different chunks of consecutive

observations which are then sampled
I Bayesian bootstrap

I Produces similar results
I But makes different/explicit assumptions regarding distributions
I Package bayesboot

I Random forest is a bootstrap of individual decision trees

39Resampling: Bootstrapping

Outline

1 Validation Set Approach

2 Cross-Validation

3 Model Tuning

4 Bootstrapping

5 Wrap-Up

40Resampling: Wrap-Up

Summary

I Resampling methods facilitate statistical inferences based on drawing
new observations from an initial sample

I Cross-validation: is an improved strategy to estimate the test error
I Bootstrap quantifies the uncertainty of model parameters

I Especially useful if only a few observations are available

I Disadvantage: high computation time

I Some disciplines even use two-stage cross-validation such that each
observation contributes to the test set

Sample

Sample Sample

Sample

Population

41Resampling: Wrap-Up

	Validation Set Approach
	Cross-Validation
	Model Tuning
	Bootstrapping
	Wrap-Up

