Resampling Methods

Business Analytics Practice
Winter Term 2015/16
Stefan Feuerriegel

Today’s Lecture

Objectives

Distinguishing between explanatory and predictive power

Learning the reasoning behind the validation set approach
Understanding cross-validation and the bootstrap for resampling
Tuning models to improve the predictive performance

esamping #

Outline

Validation Set Approach
Cross-Validation

Model Tuning
Bootstrapping

Wrap-Up

esameing 4‘

Outline

Validation Set Approach

APl YaleRen setApproach 4

Training and Test Set

» Datasets in machine learning are usually split into disjunct sets for
training and testing

Training set is used to fit and calibrate the model parameters
Test set is used to measure the predictive performance on unseen data

» Each measures a different error, i. e. the training and test error
» Rule-of-thumb: 80 % for training and 20 % for testing (or 90 % vs. 10 %)

Train Test

S—
Model :>
APl YaleRen et Approach 4‘

Training vs. Test Error

» Training error results from applying the model to the training data
» Test error is the average error when predicting on unseen observations
» Alternative terms refer to in-sample and out-of-sample performance

» The training error underestimates the test error, since it is usually
substantially smaller

APl YaleRen et Approach 4‘

Training vs. Test Error

A High bias Low bias
Lowyvariance High variance

Test set

Prediction error

/

Training set

|

Low Model complexity High

APl YaleRen et Approach 4‘

Remedies to Overfitting

Using a large training set
» Easiest solution
» However, available is often limited
Mathematical penalties to prefer simpler models
» Information criteria (e.g. AlC, BIC) find a trade-off between fit and
model complexity
» For linear models, regularization shrinks coefficients towards zero
» Pruning of decision trees limits their size

Common alternative: use a third set, the hold-out or validation set

APl YaleRen et Approach 4

Validation Set

Three-fold split into training, validation and test set
Fit model of different complexity to training data
Select model based on performance on unseen data from the

validation set

Measure predictive performance based on the test set

Rule-of-thumb: 60 % for training, 20 % for validation and 20 % for testing

Original set

N

A

'|

Training set

Test set

Training set

Validation

Test set

APl YaleRen et Approach 4

Validation Set

A Prediction
error

Selected model

Test set

7

alidation
set

Training set

Model complexity

Resampling: Validation Set Approach

Motivation for Resampling

» Often only limited data is available for measuring performance
» Sometimes performance is subject to the (random) split

» If splitting is repeated randomly, there might be a high variability across
the results

» Especially relevant for time-dependent or ordered data

» Making splits random can be of importance here

» Model performance is often inferior the less data is used

Example: Test error across different train/test splits

w
o
'

Mean squared error
N N
o (6]
P

w
o
f

=
(%))
1

=
o
f

1 2 3 4 5 6 7 8 9 10

Degree of polynomial
APl YaleRen et Approach 4

Resampling

Idea
» Repeatedly draw sub-samples from the given data set
» Then use these splits to fit and assess the model

Common methods
Cross-validation (CV)
» Improved approach for estimating the test error
» k-fold cross-validation
» Special case: leave-one-out cross-validation (LOOCV)
Bootstrap

» Quantify the uncertainty of an estimator or method
» Returns standard errors or confidence intervals for a coefficient

APl YaleRen et Approach ‘

Outline

Cross-Validation

APl Gross valeaen ﬂ

k-Fold Cross-Validation

» Randomly divide dataset into k equal-sized subsamples (i. e.folds)
Fit data using k — 1 folds
Make predictions with the left-out k-th fold and measure the
performance
Repeat this k times such that each fold becomes a validation set

» Typical choice is k =50or k=10

|< Original dataset)|
Split1 [Validation | Training | Training | Training | Training | | Test |
Split2 [Training [Validation | Training | Training | Training | | Test |
Split3 | Training | Training [Validation | Training | Training | | = Test |
Split4 [Training | Training | Training [Validation | Training | | Test |
Split5 | Training | Training | Training | Training | Validation | | Test |

Example with k =5 —
Resampling: Cross-Validation

k-Fold Cross-Validation

Algorithm
Given pre-defined k and a dataset with n observations

Randomly divide data into k-folds Cy, ..., Ck

Let n; be the number of observations in C;
= nj =~ ¢ (or equal if nis multiple of k)

Foralli=1,..., k, compute the predictive performance perf; on fold C;
and using the remaining folds for fitting

Compute the average performance

k n;
V=Y, —perf

i=1

APl Gross valeaen ‘

Cross-Validation

Example: average error on validation sets from 10-fold cross-validation
across different random splits

35+

w
o
f

Mean squared error
N
<
A

N
[$)]
1

[
o
'

[
o
f

Degree of polynomial

— Variance of root mean squared errors on validation set decreased

APl Gross valeaen ‘

Leave-One-Out Cross-Validation

» Leave-one-out cross-validation (LOOCV) is a special case with k = n
n— 1 variables are used for training
The n-th variable is used as a validation set

vV v v Y

Resampling: Cross-Validation

Has a low bias since n— 1 observations are used for training

Avoids randomness, but with high computational costs

Estimated models are highly correlated = average has a high variance
In practice, better choice is k =5 or k=10

Original | 1 | 2 | 3 | . |n
Iteration 1 2 | 3 | n
gn - OENE
Iteration 3 | 1 | 2 n

1

Iteration n 2|3

Outline

Model Tuning

resamplng: Hoset e ‘

Model tuning

Problem statement
» Most classifiers have parameters that influence their performance
» Variable selection can additionally overfitting

» How to choose the best parameters and variables?

Examples
Classifier Parameters
k-nearest neighbor Neighbors k
Polynomial regression Order of polynomial
Ridge regression, LASSO Parameter A
Support vector machine Cost parameter C, choice of kernel, . ..
Random forest Number of trees, depth, ...

Solution: use cross-validation during training to tune parameters

resamplng: Hoset e ‘

Model Tuning
Algorithm

Split dataset into training (incl. validation) and test set
Define sets of model parameters to test
for each parameter set p do
for each cross-validation split i do
Fit model on the remaining splits
Make prediction on this split i
Measure performance
end

Calculate the average performance across all splits
end

Determine the optimal parameter set p*

Fit the final with p* to all training (incl. validation) samples
Measure performance on test set

resamplng: Hoset e ‘

Model Tuning

Example: predictive performance of polynomial model and k-nearest
neighbors

1/k
0.00 0.25 0.50 0.75 1.0(
0.4 0.4
z
g 031 0.3
3
Q
Q
©
I 0.2 0.2
—
{/ — Training set
g 0.14 — Test set 0.14
i}
— Validation set
0.0 0.0
T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10010 5 2 1
Degree of polynomial Nearest neighbors k

resamplng: Hoget e ‘

Model Tuning with caret
Example with package caret
» Load package caret
library (caret)
» Split dataset into training and testing

set .seed (0)

data (GermanCredit)

inTrain <- createDataPartition (GermanCredit$Class, p=0.8,
1list=FALSE)

training <- GermanCredit[inTrain,]

testing <- GermanCredit[-inTrain,]

» Define configuration for 10-fold cross-validation

fitControl <- trainControl ("cv", number=10)

resamplng: Hoset e ‘

Model Tuning with caret

» Run random forest with default parameter tuning

set.seed (0)
rf_tuned <- train(Class ~ .,
W "

=GermanCredit,
ntrol=fitControl)
rf_tuned

Random Forest

##

1000 samples

61 predictor

2 classes: 'Bad', 'Good'

##

No pre-processing

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 900, 900, 900, 900, 900, 900,
Resampling results across tuning parameters:

##

mtry Accuracy Kappa

2 0.717 0.07864541

31 0.763 0.39202731

61 0.766 0.40236369

4

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 61.

Note: mt ry is the number of variables randomly sampled at each split

in the tree

Resampling: Model Tuning

Model Tuning with caret

» Plot performance across model parameters

plot (rf_tuned)

0.76 -

0.75 -

0.74 =

0.73 + -

0.72 -

Accuracy (Cross—Validation)

#Randomly Selected Predictors

resamplng: Hoset e ‘

Model Tuning with caret

» Predictive performance on test set

pred <- predict (rf_tuned, ata=testing)
confusionMatrix (pred, testing$Class)

Confusion Matrix and Statistics

##

Reference

Prediction Bad Good

Bad 60 0

Good 0 140

##

Accuracy 1
95% CI (0.9817, 1)
No Information Rate : 0.7
#4 P-Value [Acc > NIR] < 2.2e-16
##

Kappa : 1
Mcnemar's Test P-Value : NA
##

#4 Sensitivity 1.0
#4 Specificity 1.0
Pos Pred Value 1.0
Neg Pred Value 1.0
Prevalence 0.3
Detection Rate 0.3
Detection Prevalence 0.3
Balanced Accuracy 1.0
##

'Positive' Class : Bad
##

Resampling: Model Tuning

Practice Recommendations for caret

» Instead of "cv", one often uses "repeatedcv" which repeats the
training procedure several times to avoid non-beneficial splits

» set.seed(...) iscalled priortothe train (.. .) functionto
make results reproducible

» By default, caret tests three values for each parameter

» Alternative searches for parameters can be inserted via argument
tuneGrid

» See caret for details

» Vignette: https://cran.r-project.org/web/packages/
caret/vignettes/caret.pdf
» Manual: https://topepo.github.io/caret/

resamplng: Hoset e ‘

https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf
https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf
https://topepo.github.io/caret/

Outline

Bootstrapping

APl Bosiepene ‘

The Bootstrap

» The bootstrap quantifies the uncertainty of an estimator or a machine
learning method

Generate new samples and thus augment the dataset

In practice not possible, but one can mimic this process by constructing
artifical data

Approximate the distribution of a desired statistics
— e. g. of coefficient in least squares

» In practice, it returns standard errors
or confidence intervals

» Easily applicable, as the model or
estimation is not changed but only
repeated multiple times

APl Bosiepeine ‘

Bootstrapping

The bootstrap creates bootstrap samples by randomly collecting
observations from the original dataset with replacement

Obs.| X Y
3 |53 (28
—
Zi |1 |43 |24
Obs.| X IV 3 |53 |28
1 |43 |24
2 |21 11
3 |53 |28 obs| x |y
Original data Z Zg
2 |21 |17 as
2 |21 |11
1 |43 |24

The overlap between the original dataset and a bootstrap sample will be
around two-thirds, one-third are duplicates

APl Bosiepene ‘

Bootstrapping

Algorithm
» Repeat the following steps fori=1,...,B

Randomly sample n observations with replacements from the original
dataset in order to produce a bootstrap dataset Z;
— Implies that the same observation can occur more than once
Estimate statistic o; with new the bootstrap sample Z;

» Calculate standard error of the bootstrap estimate

1 B
SEg=4/5——) (ai—x)?
5 B—1,:Z1(’)

APl Bosiepene ‘

Bootstrap in R

Implementation
Load package boot

library (boot)

Implement a function £ that computes the statistic of interest

f <- function (data, indices) {

bootstrap_sample <- data[indices,]
model <- estimate (boostrap_sample)

out <-

return (out)

}

Call the function boot (data, f, R) to bootstrap R replicates

Resampling: Bootstrapping

Bootstrap in R

Example: standard errors of median
» Create data

set.seed(0) # initialize] for random number gene
data <- round(rnorm (100, mean=3, sd=5))
head (data)

##+ [1] 9 1 10 9 5 -5
» Create function to extract statistic

f <- function(data, indices) {
return (median (data[indices]))

}

» Bootstrapping with B = 100 replicates
b <- boot (data, f, 100)

b

Bootstrap Statistics :
original bias std. error
tlx 3 -0.1 0.662868

APl Bosiepene ‘

Bootstrap Percentiles

Computed confidence intervals are named bootstrap percentiles
» Calculated via boot .ci(...)

boot.ci (b, type="basic")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 100 bootstrap replicates

##

CALL

boot.ci(boot.out = b, type = "basic")

##

Intervals

Level Basic

95% (2, 4

Calculations and Intervals on Original Scale
Some basic intervals may be unstable

APl Bosiepene ‘

Bootstrap in R
Example: standard errors in least squares
» Create function to extract statistic

f <- function (data, indices) {
bootstrap_sample <- data[indices,]
m <- lm(mpg ~ horsepower, data=bootstrap_sample)
return (coef (m))

}
» Bootstrapping with B = 100 replicates

library (ISLR)

data (Auto)
b <- boot (Auto, f, 100)

b

Bootstrap Statistics
#4 original bias std. error

tlx 39.9358610 4.214671e-03 0.797487230
Resamp\\ﬁﬁ#ﬁo&s@aﬁpmgo .1578447 1.184515e-05 0

Bootstrap in R

» Bootstrap percentiles (argument index picks a variable of interest)

boot.ci (b, type="basic", index=2)

##
##
##
##
##

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 100 bootstrap replicates

CALL

boot.ci (boot.out = b, type = "basic", index = 2)
Intervals

Level Basic

95% (-0.1726, -0.1449

Calculations and Intervals on Original Scale

Some basic intervals may be unstable

» Comparison to least squares

coef (summary (1lm (mpg ~ horsepower, data=Auto)))

##
##
##

Resampling: Bootstrapping

Estimate Std. Error t value Pr(>|t])
(Intercept) 39.9358610 0.717498656 55.65984 1.220362e-187
horsepower -0.1578447 0.006445501 -24.48914 7.031989%9e-81

I s

Bootstrap in R

Example: risk minimization of portfolio
» Given a fixed amount of money and two assets with returns X and Y

v

Investashare axin Xand1—ainY

v

Aim: find the allocation that minimizes the total risk

min Var(aX+(1—a)Y)
o

v

Mathematical solution is

2

B Oy — Oxy

- 02402-20
X 12 XY

for which one can estimate 6%, 62 and 6%, from historic returns

APl Bosiepene ‘

Bootstrap in R

» Historic returns of X and Y in dataset Portfolio

data (Portfolio)
Portfolio[l:4,]

X Y
1 -0.8952509 -0.2349235
2 -1.5624543 -0.8851760
3 -0.4170899 0.2718880
4 1.0443557 -0.7341975

» Define function for extraction

f_alpha <- function(data, index) {
X <- data$X[index]
Y <- data$Y[index]
return ((var(Y)-cov(X,Y)) / (var(X)+var(Y)-2*+cov(X,Y)))

}
» Compute optimal o from historic returns

f_alpha(Portfolio, l:nrow(Portfolio))

Bootstrap in R

» Run bootstrap (note: true value is &« = 0.6)
b <- boot (Portfolio, f_alpha, R=1000)
Bootstrap Statistics

#4# original bias std. error
tlx 0.5758321 0.006197081 0.08594182

» Visualize distribution of o as histogram

plot (b)
Histogram of t
o o
o
<
~
g
2 o
2 R b
[
a ~N n
9
- —
o 0 _s5
T T T T e e N
03 05 07 09 -3 -1 01 2 3

Quantiles of Standard Normal

Resampling: Bootstrapping

Advanced Use of Boostrapping

» Stratified bootstrap controls how to pick observations during
resampling
» Ensures certain relationships or group memberships
» For instance, time series can be split in different chunks of consecutive
observations which are then sampled

» Bayesian bootstrap

» Produces similar results
» But makes different/explicit assumptions regarding distributions
» Package bayesboot

» Random forest is a bootstrap of individual decision trees

APl Bosiepene ‘

Outline

Wrap-Up

esamplna: e ‘

Summary

» Resampling methods facilitate statistical inferences based on drawing
new observations from an initial sample
» Cross-validation: is an improved strategy to estimate the test error
» Bootstrap quantifies the uncertainty of model parameters

» Especially useful if only a few observations are available
» Disadvantage: high computation time

» Some disciplines even use two-stage cross-validation such that each
observation contributes to the test set

Population

Resampling: Wrap-Up

	Validation Set Approach
	Cross-Validation
	Model Tuning
	Bootstrapping
	Wrap-Up

