Data Visualization

Exercise: Business Intelligence (Part 3)
Summer Term 2014
Stefan Feuerriegel

Today's Lecture

Objectives

1 Calculating descriptive statistics in order to understand datasets
2 Visualizing data in R graphically
3 Choosing appropriate plots in a given context

Outline

1 Recap: Introduction to R

2 Point Plot \& Line Plot

3 Bar Plot \& Pie Chart

4 Histogram \& Boxplot

5 Excursus: Random Numbers \& Normal Distribution

6 Q-Q Plot

7 Wrap-Up

Outline

1 Recap: Introduction to R

2 Point Plot \& Line Plot

3 Bar Plot \& Pie Chart

4 Histogram \& Boxplot

5 Excursus: Random Numbers \& Normal Distribution

6 Q-Q Plot

7 Wrap-Up

R as a Statistical Software

- Free software environment aimed at statistical computing
- Supports many operating systems (Linux, Mac OS X, Windows)
- Based on commands

Retrieving R Studio (recommended)

Download at http://www.rstudio.com/

Operations, Functions and Variables

- Applying operators and evaluating functions

```
sqrt(-4 + 2 * 3) # sqrt = square root
```

\#\# [1] 1.414

- Storing values in variables and accessing them

```
x}<-
X
## [1] 2
```


Vectors

- Creating vector by concatenation

```
x <- c(4, 0, 6)
```

- Output of first component

```
x[1]
## [1] 4
```

- Compute average value and standard deviation

```
mean(x)
## [1] 3.333
sd(x)
## [1] 3.055
```

- Generating arbitrary sequences (notation: from, to, step size) $\operatorname{seq}(4,5,0.1)$

```
## [1] 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
```


Creating Matrices

1 Generating matrices by combining vectors

```
height <- c(163, 186, 172)
shoe_size <- c(39, 44, 41)
m <- as.data.frame(cbind(height, shoe_size))
```

2 By reading file (in CSV format) via

```
d <- as.data.frame(read.csv("persons.csv",
    header=TRUE, sep=","))
d
## name height shoesize age
## 1 Julia 163 39 24
## 2 Robin 186 44 26
## 3 Kevin 172 41 21
## 4 Max 184 43 22
```


Accessing Matrices

- Access columns by name

```
d$height
## [1] 163 186 172 184
```

- Accessing individual elements (notation: \#row, \#column)

```
d[1,
    2]
## [1] 163
```

- Selecting rows using a boolean condition

```
d[d$age > 25, ]
## name height shoesize age
## 2 Robin 186 44 26
```


Outline

1 Recap: Introduction to R

2 Point Plot \& Line Plot

3 Bar Plot \& Pie Chart

4 Histogram \& Boxplot

5 Excursus: Random Numbers \& Normal Distribution

6 Q-Q Plot

7 Wrap-Up

Point Plot

- Creating simple point plots (also named scatter plots) via plot (. . .)
- Relies upon vectors denoting the x-axis and y-axis locations
- Various options can be added to change appearance

```
plot(d$height, d$age)
```


d\$height

Adding Titles and Labels

- Titles are added through additional parameters (main, xlab, ylab)
- Labels are drawn next to given points with text (. . .)

```
plot(d$height, d$age,
main="Title", # an overall title for the plot
xlab="Height", ylab="Age") # titles for x and y axis
text(d$height, d$age, d$name) # d$name are labels
```

Title

Line Plot

Generate line plot using the additional option type='l'

```
x <- seq(0, 4, 0.01)
plot(x, x * x, type = "l")
```


Outline

1 Recap: Introduction to R
 2 Point Plot \& Line Plot

3 Bar Plot \& Pie Chart

4 Histogram \& Boxplot

5 Excursus: Random Numbers \& Normal Distribution

6 Q-Q Plot

7 Wrap-Up

Data Frequency

BI Case Study

Participants were asked, in a representative study, what the first day away from work was during their last illness
Question: Are you more likely to become sick on certain working days?

Example File: numberofstaffill.csv

```
"DAYOFWEEK"
"MON"
"THU"
"THU"
"THU"
•••
```


Accessing Data

- Reading data

```
d <- as.data.frame(read.csv("numberofstaffill.csv",
    sep=",", header=TRUE))
```

- Printing first rows of data

head (d)	
\#\#	
\#\#	1
\#\# \#	2
\#\#	3
\#\#	4
\#\#	5
\#\#	6

- Calculating number of observations

```
dim(d)
## [1] 300 1
obs <- dim(d)[1] # 300 rows/observations
```


Data Frequency (Solution A)

- Count frequencies for each weekday

```
mo <- length(d[d$DAYOFWEEK == "MON", ])
tu <- length(d[d$DAYOFWEEK == "TUE", ])
we <- length(d[d$DAYOFWEEK == "WED", ])
th <- length(d[d$DAYOFWEEK == "THU", ])
fr <- length(d[d$DAYOFWEEK == "FRI", ])
sa <- length(d[d$DAYOFWEEK == "SAT", ])
su <- length(d[d$DAYOFWEEK == "SUN", ])
```

- Print absolute and proportional frequencies \rightarrow peak on mondays

```
freq <- as.data.frame(cbind(mo, tu, we, th, fr, sa, su))
freq # absolute frequencies
## 
freq/obs # proportional frequencies
\begin{tabular}{rrrrrrrr} 
\#\# & & mo & tu & we & th & fr & sa \\
\#\# & 1 & 0.32 & 0.2 & 0.17 & 0.15 & 0.1 & 0.03 \\
0.03
\end{tabular}
```


Data Frequency (Solution B)

- Absolute frequencies via table (. . .)

```
table(d$DAYOFWEEK)
##
## FRI MON SAT SUN THU TUE WED
## 30 96 9
```

- Proportional occurrences by subsequent scaling

```
table(d$DAYOFWEEK)/obs
##
##
```


Histogram

- barplot (. . .) creates a bar plot using given frequencies in abs.freq
- Useful for visualizing absolute frequencies of categories

```
abs.freq <- table(d$DAYOFWEEK)
barplot(abs.freq)
```


Pie Chart

- pie (...) draws a pie chart using frequencies in abs.freq
- Useful for visualizing relative frequencies

```
abs.freq <- table(d$DAYOFWEEK)
pie(abs.freq)
```


Outline

1 Recap: Introduction to R

2 Point Plot \& Line Plot

3 Bar Plot \& Pie Chart

4 Histogram \& Boxplot

5 Excursus: Random Numbers \& Normal Distribution

6 Q-Q Plot

7 Wrap-Up

Data Distribution

BI Case Study

In a study (Hornik et al., 2008), all court (VwGH) decisions between 2000 and 2004 were analyzed in terms of their length.
Question: What is the distribution of lawsuit durations?

Example File: court_decisions.csv

```
year,senate,senatesize,decision,durationrev,duration
2004,13,5,2,893,2738
2004,13,5,3,2738,1624
2004,13,5,3,2372,1624
2004,13,3,2,888,1282
```

- duration gives duration in days
- unknown data marked as "-9999" in duration

Accessing Data

- Reading data

```
decisions <- as.data.frame(read.csv("court_decisions.csv",
    sep=",", header=TRUE ))
```

- Filtering data to remove those with unknown lawsuit duration

```
d <- decisions[decisions$duration != -9999, ]
```

- Calculating dimensions of data
dim (d)

```
## [1] 3745 6
```


Histograms with Frequencies

- Histograms are a graphical representation of the distribution of data
- Created via hist (data) to get fixed width of classes
- y-axis gives frequency \rightarrow estimating probability distribution

```
hist(d$duration,
main = "Lawsuit Duration", xlab = "Duration in Days")
```


Lawsuit Duration

Duration in Days

Histograms with Densities

- Density (1.00 人 100%) on y-axis via hist (data, freq=FALSE)
- Parameter breaks=b gets a variable width of classes

```
b <- c(0, 100,500,1000,3300)
hist(d$duration, breaks = b,
main = "Lawsuit Duration", xlab = "Duration in Days")
```


Lawsuit Duration

Quantiles

- Quantiles are points taken at regular intervals from the cumulative distribution function (CDF) of a random variable
- p-percent quantile for a variable X is $\operatorname{Pr}[X<x] \leq q$
- 50%-quantile named median; 25%-quantiles called quartiles

Descriptive Statistics

- Minimum and maximum

```
min(d$duration)
## [1] 2
max(d$duration)
## [1] 3262
```

- Median (i.e. $50 \%-q u a n t i l e)$
median(d\$duration)
\#\# [1] 868
- Arbitrary p-percent quantiles

```
# with p = 25%
quantile(d$duration, 0.25)
## 25%
## 258
```

- Combined descriptive statistics

```
summary(d$duration)
```

\#\#
Min. 1st Qu.
Median
Mean 3rd Qu.
Max.
\#\# 2058
9151440
3260

Boxplot: Elements

| Lower | Lower | Median | Upper
 "whisker" |
| :---: | :---: | :---: | :---: | | Upper |
| :---: |
| quartile |

- Interquartile Range (IQR) is between first and third quartile
- 50% of the data is in the IQR
- Lower/first quartile means the 25% quantile
- Upper/third quartile means the 75% quantile

Boxplot

- Use boxplot (. . .) to draw boxplot visualizing outliers (as circles), range and quartiles
- Default is vertical mode (horizontal=FALSE)

```
boxplot(dSduration, horizontal=TRUE,
xlab="Duration in Days")
```


Duration in Days

Boxplot

- To prevent highlighting of outliers, use range=0

```
boxplot(d$duration, horizontal=TRUE,
xlab="Duration in Days", range=0)
```


Outline

1 Recap: Introduction to R
2 Point Plot \& Line Plot
3 Bar Plot \& Pie Chart
4 Histogram \& Boxplot

5 Excursus: Random Numbers \& Normal Distribution

6 Q-Q Plot

7 Wrap-Up

Random Numbers from Uniform Distribution

- In a uniform distribution, all floating-point numbers equally likely
- Generate n random numbers in range min to max via runif($n, ~ m i n, ~ m a x) ~$

```
runif(1, 5, 7.5) # generate 1 number between 5.0 and 7.5
```

```
## [1] 7.242
```

- Example

```
hist(runif(1000, 1, 6), xlab = "", main = "")
```


Random Numbers from Discrete Uniform Distribution

- Discrete uniform distribution considers only equally-likely integers
- Generate n random numbers via

```
sample(min:max, n, replace=TRUE)
# generates 2 numbers from the set 1, ..., 10
sample(1:10, 2, replace = TRUE)
## [1] 9 3
```

- Example (e.g. rolling dice 1000 times)

```
table(sample(1:6, 1000, replace = TRUE))
##
##
## 167 152 200 145 167 169
```


Normal Distribution

Definition: Normal (or Gaussian) Distribution

- Defined by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

with mean μ and standard deviation σ

- Standard normal distribution: $\mu=0$ and $\sigma=1$; then its probability density function becomes

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-1 / 2 x^{2}}
$$

Random Numbers from a Normal Distribution

- Generate n random numbers from standard normal distribution ($\mu=0$ and $\sigma=1$) with rnorm (n)

```
rnorm(1) # 1 number from the std. normal distribution
## [1] 1.263
```

- Example (resembles density)
hist (rnorm(1000))

Histogram of rnorm(1000)

Normal Distribution: Example

Sum of rolling n fair 6 -sided dice converges to a shape of a normal distribution

Normal Distribution: Plotting

- Density of normal distribution with mean μ and standard deviation σ is computed by dnorm (x, mean $=\mu$, sigma= σ)
- Plot shows probability density function of standard normal distribution

```
x<- seq}(-5,5,0.01
y <- dnorm(x, mean = 0, sd = 1)
plot(x, y, type = "l") # visualize as line plot
```


Normal Distribution: Plotting

Exercise

Plot the normal distribution with mean $\mu=2$ and standard deviation $\sigma=0.5$

```
x <- seq}(-5, 5, 0.01
y <- dnorm(x, mean = 2, sd = 0.5)
plot(x, y, type = "l")
```


Outline

1 Recap: Introduction to R
2 Point Plot \& Line Plot
3 Bar Plot \& Pie Chart
4 Histogram \& Boxplot
5 Excursus: Random Numbers \& Normal Distribution
6 Q-Q Plot
7 Wrap-Up

Comparing Distributions

BI Case Study

Is the duration of lawsuits normally distributed?

Solutions:
1 Histogram (also showing baseline distribution)
2 Q-Q plot

Comparing Distributions: Histogram

- Not recommended: Compare histogram and corresponding normal distribution by overlapping plot
- hist (dSduration, freq=FALSE)
$x x<-$ seq(min(d\$duration), max(d\$duration), 0.01)
lines (xx, dnorm(xx, mean=mean(d\$duration),
sd=sd(d\$duration)))

Histogram of d\$duration

Q-Q Plot

- Q-Q plot ("Q" stands for quantile) compares two probability distributions by plotting their quantiles against each other
- qqnorm (d), qqline (d) use standard normal distribution

```
# plot sample against
# theoretical standard
# normal distribution
qqnorm(d$duration)
# line that represents
# true normal distribution
qqline(d$duration)
\(\rightarrow\) No standard normal distribution because of strong offset at tails
```


Q-Q Plot

Exercise

Verify that rnorm (200) is, in fact, normally distributed

```
x <- rnorm(200)
qqnorm(x)
qqline(x)
```

\rightarrow Strong linear pattern suggests standard normal distribution

Outline

1 Recap: Introduction to R
2 Point Plot \& Line Plot
3 Bar Plot \& Pie Chart
4 Histogram \& Boxplot
5 Excursus: Random Numbers \& Normal Distribution
6 Q-Q Plot

7 Wrap-Up

Fancy Diagrams with ggplot2

library(ggplot2)
df <- data.frame(Plant=c("Plant1", "Plant1", "Plant1", "Plant2", "Plant2", "Plant2"),
Type $=\mathbf{c}(1,2,3,1,2,3)$,
Axis1=c(0.2, $-0.4,0.8,-0.2,-0.7,0.1)$,
Axis2 $=\mathbf{c}(0.5,0.3,-0.1,-0.3,-0.1,-0.8)$)
ggplot (df, aes(x=Axis1, $y=A x i s 2$, shape=Plant,
color=Type)) + geom_point(size=5)

Guideline to Choosing Plots

Data Structure	Plot	R Command
Relationship (2-dim.)	Point Plot	plot (x, y)
Evolving Time Series	Line Plot	plot $(x, y$, type='l')
Absolute Frequencies	Bar Plot	barplot (freq)
Proportions	Pie Chart	pie (freq)
Frequencies (Fixed Ranges)	Histogram	hist (d)
Densities (Variable Ranges)	Histogram	hist (d, freq=FALSE, breaks=b)
Distribution Variation	Boxplot	boxplot (d)
Distribution Comparison	Q-Q Plot	qqnorm (d), qqline (d)

Summary: Commands

Descriptive Statistics

```
table(data)
median(data)
quantile(data, p) p-percent quantile
summary(data)
Absolute frequencies of categories
median (data)
Median value
quantile(data, p) p-percent quantile
summary (data)
Descriptive statistics
```


Generating Random Numbers

```
runif(n, min, max)
sample(from:to, n, replace=TRUE)
rnorm(n)
dnorm(x, mean = }\mu\mathrm{ , sigma= }\sigma\mathrm{ )
```

from uniform distribution
from discrete uniform distribution from normal distribution
Density of standard normal distribution

Further Exercises

\rightarrow available online as homework

