Data Analysis

Exercise: Business Intelligence (Part 4)
Summer Term 2014
Stefan Feuerriegel




Today’s Lecture

Objectives

Understanding the concept of linear regressions

Testing necessary requirements to perform ordinary least squares
Selecting and comparing models in terms of fit
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Correlation

Bl Case Study

Question: Is there a correlation between value of players and goals of
teams playing in the German Soccer League?

Data: bundesliga2009.csv

Club;PlayerValue; Goals;Points
Bayern;10.4;34;33
Wolfsburg;5.34;32;24
HSV;4.38;34;31
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Accessing Data
» Reading data from file

d <- read.csv("bundesliga2009.csv", sep = ";", header = TRUE)

» Showing first rows

head (d)

#4# Club PlayerValue Goals Points
#4# 1 Bayern 10.40 34 33
## 2 Wolfsburg 5.34 32 24
## 3 HSV 4.38 34 31
## 4 Leverkusen 4.11 35 35
## 5 Bremen 4.05 32 28
## 6 Stuttgart 4.01 16 16

» Calculating total value of all players
sum (d$PlayerValue)

## [1]1 57.09



Data as Point Plot

plot (d$SPlayerValue, d$Goals, main="Bundesliga Season 2009/10",
xlab="Current Value of Players", ylab="Goals after 17 weeks")
text (d$PlayerValue, d$Goals, d$Club)
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Pearson Correlation Coefficient

» Measures the linear correlation (dependence) between two variables
» For a stochastic variable

_ CovX,y) _ EX—EDD(Y—ED]
OxOy OxOy ’

Px,y
» For a finite sample

Fe Y (xi — ) (i — 1y)
\/Zi (xi— .ux)z\/Zi (vi— .uy)z

with mean p, and p, respectively

€[-1,+1]

cor (d$PlayerValue, d$Goals)

## [1] 0.6525

» Other correlation coefficients (such as Spearman) exist in cases when
data is not normally distributed



Pearson Correlation Coefficient
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Hypothesis Testing

» Results are called statistically significant if it has been predicted as
unlikely to have occurred by chance alone, according to a
pre-determined threshold probability, the significance level

» Hy: null hypothesis associated with a contradiction to a theory
» Ha: alternative hypothesis associated with a theory to prove

» P-value gives probability, assuming the null hypothesis is true, of
observing a result t at least as extreme as the test statistic f,

PIX >= ]

Reject Hy

Accept Ho

Data Analysis: Correlation



Example: Clairvoyant Card Game

> A person is tested for clairvoyance — asked which of the four suits 25
randomly chosen cards belongs to

» The number of hits (correct answers) is called X
» To find evidence of clairvoyance

1 1
Ho:p= y (just guessing) Ha:p> ) (true clairvoyant)

» What is the critical number ¢, of hits, at which we assume
clairvoyance?

Plreject Ho | Hp is valid] =P [X > t;|p=1/4] <

with maximum acceptable probability o of false positives

» We choose the smallest t. that gives a probability below o
— e.g. with @ = 1%, we get t, = 13



t-Test for Pearson Correlation Coefficient

v

Test measures if Pearson correlation coefficients are significant given
a threshold

Null hypothesis Hy: p = 0 (i.e. no linear relationship)

v

v

Alternative hypothesis Ha: p £ 0 (orp >0V p < 0)

v

Variable t = ’1V_”r_22 has Student’s t-distribution in the null case, with
p correlation of the population

r  correlation of the sample
n size of sample



Pearson Correlation Coefficient

cor.test (d$PlayerValue, dS$Goals)

##

## Pearson's product-moment correlation
##

## data: dS$PlayerValue and d$Goals

## t = 3.445, df = 16, p-value = 0.003332
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:

## 0.267 0.858

## sample estimates:

## cor

## 0.6525

— Although the correlation is relatively small, the P-value of 0.003332 < 0.01 indicates a
significant linear dependence at the 1 %-significance level
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Linear Models

» Linear Model: y = o+ By x1+...+ Bxxx + €
» Given y named observations, response or dependent variable

» Given x1,...,Xx named regressors, exogenous or independent
variables
» Given residuals € with entries &;,..., &y
» Estimate intercept a and the coefficients B, ..., Bx by minimizing error

terms €, e. g. via ordinary least squares (OLS) estimator

min €ll= min y—(ot+Bixq+...+ Bex
o i flell = min ly = (o Brxs + ...+ Bix)|

— important to test assumptions to avoid confounded results
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Linear Regression

m <- 1lm(d$Goals ~ dS$PlayerValue)
summary (m)

#4#

## Call:

## 1lm(formula = d$Goals ~ d$PlayerValue)

##

## Residuals:

#4# Min 1Q Median 30 Max

## -10.51 -4.95 1.26 3.63 9.54

#4#

## Coefficients:

#4# Estimate Std. Error t value Pr(>|t])

## (Intercept) 15.912 2.586 6.15 1.4e-05 *x*x*
## dS$PlayerValue 2.323 0.674 3.44 0.0033 *x
## ———

## Signif. codes: 0 '"xxx' 0.001 '%x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#4#

## Residual standard error: 6.17 on 16 degrees of freedom
## Multiple R-squared: 0.426, Adjusted R-squared: 0.39
## F-statistic: 11.9 on 1 and 16 DF, p-value: 0.00333
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Notation

» Alternatively, data can be specified via parameter data=

# Both variants vield the same result

(
(

d$Goals ~ d$SPlayerValue)

1lm
Im(Goals ~ PlayerValue, data = d)

» Operator dependent ~ . uses all other columns as regressors

colnames (d)

## [1] "Club" "PlayerValue" "Goals" "Points"
Im(Goals ~ Club + PlayerValue + Points, data = d)
lm(Goals ~ ., data = d)

» Multivariate regressions feature more than one independent variable
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R2: Coefficient of Determination

## Multiple R-squared: 0.426, Adjusted R-squared: 0.39

Coefficient of determination, R, measures ratio of explained variance

Calculation Multivariate Regression

_ SSreg €[0,1] inOLS » Adjusted R?is an attempt to take into

account the phenomenon that R?
automatically increases with extra
explanatory variables

» Adjusted

RZ

» Total sum of squares (proportional
to sample variance)

SSot =Y. (vi— k)
i A n—1
RP=1-(1-R?) ——¢€o,1]
> Regression sum of squares n—p—1
" where p is the total number of
SSreg = Z (i— .uy)2

7 regressors

where ; is the predicted value
Data Analysis: Linear Models



Linear Regression Models

## Coefficients:

#4# Estimate Std. Error t value Pr(>|t])

## (Intercept) 15.912 2.586 6.15 1.4e-05 x*x

## d$PlayerValue 2.323 0.674 3.44 0.0033 *x

#4# ——

## Signif. codes: 0 '"sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

» Estimate gives the least squares estimates of & and coefficients

» Std. Error shows standard errors ; of each coefficient estimate

» f-value and P-value columns test whether any of the coefficients might
be equal to zero

» t-statistic is calculated as t = f3;/6;, if errors € follow a normal
distribution
— large values of t indicate that the null hypothesis can be rejected and
that the corresponding coefficient is not zero

» P-value expresses the results of the hypothesis test as a significance
level; conventionally, P-values smaller than 0.05 are taken as evidence

that the coefficient is non-zero
JaR fnelysis bnear edes ‘



F-Test

» F-statistic tries to test the hypothesis that all coefficients (except the
intercept) are equal to zero

> Ho: pr=Pe=...=P=0

## F-statistic: 11.9 on 1 and 16 DF, p-value: 0.00333

— With a P-value of 0.00333, we can reject the null hypothesis at the
1 %-significance level

JaR fnelysis bnear edes ‘



Plot: Fitted Model

Draw line of best fit in 2 dimensions via abline (model)

plot (d$PlayerValue, d$Goals, main="Bundesliga Season 2009/10",
xlab="Current Value of Players", ylab="Goals after 17 weeks")
m <- 1lm(d$Goals ~ d$PlayerValue)

abline (m)
Bundesliga Season 2009/10
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OLS Estimator: Assumptions
The OLS technique imposes several assumptions in order for the method to
give meaningful results

Homoscedasticity means that the error term has the same variance ¢
in each observation

Non-Autocorrelation requires that the errors are uncorrelated between
observations

No Linear Dependence prerequisites regressors to all be linearly
independent

Required package 1mtest for the following R scripts:

library (lmtest)



Regression Diagnostics

Perform default regression diagnostics, such as plots with residuals vs fitted
values, and Q-Q plot of residuals

plot (m)
Residuals vs Fitted
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Im(d$Goals ~ d$PlayerValue)
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Assumption: Homoscedacitity

» Error term has the same variance 62 in each observation, i. e.
E[e| X] = 0?

» Violation is named heteroscedasticity
» Verify, for example, by:

Statistical Tests Visual Regression Diagnostics

» Breusch-Pagan test » Residuals vs fitted

> White test » Residuals across

» Goldfeld-Quandt test observations

» Harrison-McCabe test » Histogram or Q-Q plot to
check normal distribution of
residuals



Breusch-Pagan Test: Concept
Is the estimated variance of the residuals dependent on the regressors?
— suppose regression model y = @+ B1x1+... + xx+ €
Get estimated errors &

Estimate of error variance can be obtained from the average of the
. A2
squared values, i.e. €

Assumption: variance of residuals & does not depend on the
regressors X1, ... Xg

Estimate model &2 = Yo+ VX1 + ... YiXk+V

If an F-test confirms that the independent variables are jointly
significant — the null hypothesis of homoscedasticity can be rejected



Breusch-Pagan Test
» Generate simple linear model y = o + B x + € as demonstration
» Generate a regressor x
x <- rep(c(-1, 1), 50)
» Generate heteroscedastic and homoscedastic disturbances

err.heteroscedastic <- rnorm(100, sd = rep(c(l, 2), 50))
err.heteroscedastic[1:5]

## [1] 1.2630 -0.6525 1.3298 2.5449 0.4146

err.homoscedastic <- rnorm(100)
err.homoscedastic([1l:5]

## [1] 0.78186 -0.77678 -0.61599 0.04658 -1.13039

» Create dependent variable y as a linear relationship

y.heteroscedastic <- 1 + x + err.heteroscedastic
y.homoscedastic <- 1 + x + err.homoscedastic



Breusch-Pagan Test

» Perform Breusch-Pagan test via bptest (y ~ x1 + x2 + ...)
» Example with heteroscedasticity — P-value < 0.05

bptest (y.heteroscedastic ~ x)

##

## studentized Breusch-Pagan test

##

## data: y.heteroscedastic ~ x

## BP = 8.592, df = 1, p-value = 0.003376

» Example with homoscedasticity — P-value > 0.05
bptest (y.homoscedastic ~ x)

##

## studentized Breusch-Pagan test

##

## data: vy.homoscedastic ~ x

## BP = 0.3042, df = 1, p-value = 0.5812



Normally Distributed Residuals

hist (m$residuals, freq = FALSE, breaks = seq(-12, 12, 2))
xx <- seq(min (m$residuals), max(m$residuals), 0.01)
lines (xx, dnorm(xx, mean = mean (m$residuals), sd = sd(m$residuals)))

Histogram of m$residuals

o
—! -
o
el —
o
o
> © I
Z S
2 o —
3
o <
o 4
o
o
o 4
o
o
8 J
© T T T T 1
-10 -5 0 5 10
méresiduals



Normally Distributed Residuals

ggnorm (m$residuals) 1 1 in heoretical normal distri ion
ggline (m$residuals)

Normal Q-Q Plot
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Residuals across Observations

plot (1:1length (m$Sresiduals), mSresiduals)

10
|

m$residuals

-5
|

o

T T T
5 10 15

1:length(m$residuals)

— works better with residuals across time
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Assumption: Non-Autocorrelation

» Errors are uncorrelated between observations, i. e.
E[8i8j|X] =0 fori 7éj

» May be violated, e. g., in the context of time series data, panel data,
cluster samples, hierarchical data
» Example: if you witnessed a stock making gains over the past, you
might reasonably expect further upward movement
» Verify, for example, by
» plotting residuals across observations

» plotting or calculating the autocorrelation function (ACF) of the residuals
» performing Durbin-Watson test



Autocorrelation Function
» Measures relationship between values separated from each other by a

given time lag

Given time series data Yj,..., Yy as observations, with mean Yy

>
» Autocorrelation coefficient ry at lag h is given by
Ch
rh = COI’( Yt—f—h; Yt)
Co

normalized by ¢y = 62 (variance of Y))
Autocovariance function given by

v

Ch = COV( Yt+h, Yt Z Yt+h — ?)

Check if r, exceeds a given significance level

v



Correlogram
» Plot autocorrelation function via acf (d)

data (unemployment)
u <- window (unemployment, start = 1895, end = 1956)
acf(ul[, "UN"])

Series u[, "UN"]
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— If exceeds blue dashed line, then autocorrelation at a significant level



Correlogram
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Hourly electricity prices Jay—ahead auctions

ep <- read.csv ("epexspot_auction_de_2009- 2012 csv",
sep=",", header=FALSE)

acf (ep([,4])

Series ep], 4]
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Durbin-Watson Test

» Detects the presence of autocorrelation in the residuals
» Test statistic

N

Y (& — &1 )2
=2

d= %2(1—[’1)

N
Y &
t=1

where ry is the sample autocorrelation of the residuals

Test statistic  Autocorrelation Interpretation

a=2 rn=0 no autocorrelation
ada=>0 rf=-+1 perfect positive autocorrelation
d=4 rn=-1 perfect negative autocorrelation

» Hy: no autocorrelation (r; = 0) presentif d =2
» Ha: autocorrelation (r; # 0) presentifd =0ord =4



Durbin-Watson Test

» Generate simple linear model y = o + B x + € as demonstration
» Generate a regressor x

x <- rep(c(-1, 1), 50)
» Generate disturbances without/with autocorrelation

err.noac <— rnorm(100)

err.ac <- filter(err.noac, 0.9, method="recursive")

» Create dependent variable y as a linear relationship

y.noac <- 1 + x + err.noac
y.ac <- 1 + x + err.ac



Durbin-Watson Test

» Perform Durbin-Watson test via dwtest (y ~ x1 + x2 + ...)
» Example with no autocorrelation — P-value > 0.05

dwtest (y.noac ~ x)

##

## Durbin-Watson test

##

## data: y.noac ~ x

## DW = 1.678, p-value = 0.06347

## alternative hypothesis: true autocorrelation is greater than 0

» Example with autocorrelation — P-value < 0.05
dwtest (y.ac ~ x)

#4#

## Durbin-Watson test

#4#

## data: y.ac ~ x

## DW = 0.3253, p-value < 2.2e-16

## alternative hypothesis: true autocorrelation is greater than O
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Assumption: No Linear Dependence
» Regressors X =[xy | ... | x,] are all linearly independent, i.e.
Pr[rank(X) = k] =1,
that means X must almost surely have full column rank
» Violation called linear dependence or (perfect) multicollinearity

» Testing by Pearson correlation coefficient possible, but quite strict
» Instead: use Variance Inflation Factors or condition number of X



Correlation Matrix

» Construction of a correlation matrix for the explanatory variables will
yield indications as to the likelihood that any given couplet of
right-hand-side variables are creating multicollinearity problems

» Correlation values (off-diagonal elements) of at least 0.4 are
interpreted as indicating a multicollinearity problem

» Example:
cor (as.data. frame (cbind (d$PlayerValue, d$Points)),

use="pair")

## V1 V2
## V1 1.000 0.544
## V2 0.544 1.000



Variance Inflation Factors

» Quantifies the severity of multicollinearity

» Measures how much the variance (the square of the estimate’s
standard deviation) of an estimated regression coefficient has
increased because of collinearity

» Load necessary library car

library (car)
» Calculate via vif (m) for an already estimated model m

m <- 1lm(d$Goals ~ d$PlayerValue + d$Points)

vif (m)
## dSPlayerValue d$Points
#4 1.42 1.42

vif(m) > 4

## dSPlayerValue d$Points
## FALSE FALSE

» Indication of multicollinearity if above 4



Condition Number

» Condition number k measures the ill-conditioning of a matrix

» Equivalent to the numerical stability of its inversion (in finite precision)
or how full its rank is
» Condition number k is computed via kappa (d)

kappa (as.data. frame (cbind (d$PlayerValue, d$Points)))
## [1] 15.77

» |f the condition number is above 30 , the regression is said to have
multicollinearity
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Model Selection

» Example: Which model should we select?

Model A consisting of 10 explanatory variables with an R = 0.6
Model B consisting of 6 explanatory variables with an R? = 0.4

Information Criterion

Deals with trade-off between complexity and the goodness of fit

v

v

Cannot tell anything about how well a model fits the data in an
absolute sense

» Prefer model with the minimum information criterion value

v

Examples: Akaike Information Criterion, Bayes Information Criterion

e Ay Hoge Selecton ‘



Information Criterion: AIC and BIC

» Not only rewards goodness of fit, but also includes a penalty that is an
increasing function of the number of estimated parameters

» The penalty discourages overfitting

Akaike Information Criterion Bayesian Information Criterion

> AIC =2df—-2InL » BIC=df-lnn—2InL

> df is the degrees of freedom » Penalty is logarithmic with
(number of parameters including observations n
error €)

» BIC puts stronger penalty on

> Lis the maximized value of the additional parameters than AIC
likelihood function

e Ay Hoge Selecton ‘



AIC and BIC

> 1ogLik (m) extracts likelihood

I Irre alpl a, epsilic

m <-— lm(d$GoalS ~ d$PlayerValue)
logLik (m) [1] # extract 1ik

## [1] -57.24

» Use commands AIC (m) and BIC (m) to calculate each criterion

AIC (m) BIC (m)

## [1] 120.5 #4 [1] 123.2

2 « 3 - 2 » logLik (m) [1] 3 » log(18) - 2 % logLik(m)[1]
## [1]1 120.5 ## [1] 123.2

e Ay Hoge Selecton ‘
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Prediction with Linear Models

Bl Case Study

Until September 2009, the Freiburg soccer team has scored 19 goals with a
market value of €1.12m

Question: How many goals could be expected with a market value of
€5m?



Prediction with Linear Models

» An already estimated linear model y = o + B1X1 + ...+ BkXx + € can
be used to evaluate with new values xi,..., X, giving

Y=o+ Bixi+ .+ Brx

» Use the command predict (m, newdata=d) for a model m and

new data d

» Example
m <- 1lm(Goals ~ PlayerValue, data = d)
nd <- data.frame (PlayerValue = 5)

predict (m, newdata = nd)

## 1
## 27.52

— the expected number of goals is 27.52
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Wrap-Up: OLS Estimator

» The OLS technigue imposes several assumptions in order for the
method to give meaningful results

Homoscedasticity means that the error term has the same variance ¢
in each observation

Non-Autocorrelation requires that the errors are uncorrelated between
observations

No Linear Dependence prerequisites regressors to all be linearly
independent

» After verifying assumption, identify parameters with significant
influence on outcome — t-value and P-value

» Look at overall model fit in terms of R?, adjusted R? and F-test
» Select model that competes best in terms of information criterion

» Interpret magnitude and sign of coefficients, as well as significance
level

e el e ‘



Summary: Commands

Estimating Linear Models

cor (x, y) Correlation coefficient

cor.test (x, y) t-Test for Pearson correlation coefficient
Im(y ~ x1 + ...) Estimate linear model

summary (model) Detailed regression statistics

abline (model) Draw line of best fit

plot (model) Plots with regression diagnostics

bptest (model) Breusch-Pagan test — heteroscedasticity
acf (d) Plot autocorrelation function

dwtest (model)  Durbin-Watson test — non-autocorrelation
vif (model) Variance Inflation Factor — no linear dependence
kappa (X) Condition number of matrix

e el e ‘



Summary: Commands

Model Selection and Prediction

logLik (model) [1] Model likelihood
AIC (model) Akaike Information Criterion
BIC (model) Bayesian Information Criterion

predict (model, newdata=d) Prediction model outcome for new data

Further Exercises

— Available online as homework
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