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Today’s Lecture

Objectives

1 Understanding the concept of linear regressions

2 Testing necessary requirements to perform ordinary least squares

3 Selecting and comparing models in terms of fit
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Correlation

BI Case Study

Question: Is there a correlation between value of players and goals of
teams playing in the German Soccer League?

Data: bundesliga2009.csv

Club;PlayerValue;Goals;Points
Bayern;10.4;34;33
Wolfsburg;5.34;32;24
HSV;4.38;34;31

...

5Data Analysis: Correlation



Accessing Data
I Reading data from file

d <- read.csv("bundesliga2009.csv", sep = ";", header = TRUE)

I Showing first rows

head(d)

## Club PlayerValue Goals Points
## 1 Bayern 10.40 34 33
## 2 Wolfsburg 5.34 32 24
## 3 HSV 4.38 34 31
## 4 Leverkusen 4.11 35 35
## 5 Bremen 4.05 32 28
## 6 Stuttgart 4.01 16 16

I Calculating total value of all players

sum(d$PlayerValue)

## [1] 57.09
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Data as Point Plot

plot(d$PlayerValue, d$Goals, main="Bundesliga Season 2009/10",
xlab="Current Value of Players", ylab="Goals after 17 weeks")
text(d$PlayerValue, d$Goals, d$Club)
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Pearson Correlation Coefficient
I Measures the linear correlation (dependence) between two variables

I For a stochastic variable

ρX ,Y =
Cov(X ,Y )

σX σY
=

E[(X −E[X ])(Y −E[Y ])]

σX σY
∈ [−1,+ 1]

I For a finite sample

r =
∑i (xi −µx )(yi −µy )√

∑i (xi −µx )2
√

∑i (yi −µy )2
∈ [−1,+ 1]

with mean µx and µy respectively

cor(d$PlayerValue, d$Goals)

## [1] 0.6525

I Other correlation coefficients (such as Spearman) exist in cases when
data is not normally distributed
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Pearson Correlation Coefficient
r = 0 r =−0.3 r = 0.5

r =−0.7 r = 0.9 r =−0.99
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Hypothesis Testing
I Results are called statistically significant if it has been predicted as

unlikely to have occurred by chance alone, according to a
pre-determined threshold probability, the significance level

I H0: null hypothesis associated with a contradiction to a theory

I HA: alternative hypothesis associated with a theory to prove

I P-value gives probability, assuming the null hypothesis is true, of
observing a result t at least as extreme as the test statistic tc

Accept H0

Reject H0

t

P[X >= c]

tc
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Example: Clairvoyant Card Game

I A person is tested for clairvoyance→ asked which of the four suits 25
randomly chosen cards belongs to

I The number of hits (correct answers) is called X

I To find evidence of clairvoyance

H0 : p =
1
4

(just guessing) HA : p >
1
4

(true clairvoyant)

I What is the critical number tc of hits, at which we assume
clairvoyance?

P [reject H0 |H0 is valid] = P [X ≥ tc |p = 1/4]≤ α

with maximum acceptable probability α of false positives

I We choose the smallest tc that gives a probability below α

→ e. g. with α = 1%, we get tc = 13
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t-Test for Pearson Correlation Coefficient

I Test measures if Pearson correlation coefficients are significant given
a threshold

I Null hypothesis H0: ρ = 0 (i.e. no linear relationship)

I Alternative hypothesis HA: ρ 6= 0 (or ρ > 0∨ρ < 0)

I Variable t = r
√

n−2
1−r2 has Student’s t-distribution in the null case, with

ρ correlation of the population
r correlation of the sample
n size of sample
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Pearson Correlation Coefficient

cor.test(d$PlayerValue, d$Goals)

##
## Pearson's product-moment correlation
##
## data: d$PlayerValue and d$Goals
## t = 3.445, df = 16, p-value = 0.003332
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.267 0.858
## sample estimates:
## cor
## 0.6525

→ Although the correlation is relatively small, the P-value of 0.003332 < 0.01 indicates a

significant linear dependence at the 1%-significance level
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Linear Models

I Linear Model: y = α + β1x1 + . . .+ βk xk + εεε

I Given y named observations, response or dependent variable
I Given x1, . . . ,xk named regressors, exogenous or independent

variables
I Given residuals εεε with entries ε1, . . . ,εN

I Estimate intercept α and the coefficients β1, . . . ,βk by minimizing error
terms εεε , e. g. via ordinary least squares (OLS) estimator

min
α,β1,...,βk

‖εεε‖= min
α,β1,...,βk

‖y− (α + β1x1 + . . .+ βk xk )‖

→ important to test assumptions to avoid confounded results
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Linear Regression

m <- lm(d$Goals ~ d$PlayerValue)
summary(m)

##
## Call:
## lm(formula = d$Goals ~ d$PlayerValue)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.51 -4.95 1.26 3.63 9.54
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.912 2.586 6.15 1.4e-05 ***
## d$PlayerValue 2.323 0.674 3.44 0.0033 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.17 on 16 degrees of freedom
## Multiple R-squared: 0.426, Adjusted R-squared: 0.39
## F-statistic: 11.9 on 1 and 16 DF, p-value: 0.00333
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Notation
I Alternatively, data can be specified via parameter data=

# Both variants yield the same result
lm(d$Goals ~ d$PlayerValue)
lm(Goals ~ PlayerValue, data = d)

I Operator dependent ~ . uses all other columns as regressors

colnames(d)

## [1] "Club" "PlayerValue" "Goals" "Points"

# Both variants yield the same result
lm(Goals ~ Club + PlayerValue + Points, data = d)
lm(Goals ~ ., data = d)

I Multivariate regressions feature more than one independent variable
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R2: Coefficient of Determination

## Multiple R-squared: 0.426, Adjusted R-squared: 0.39

Coefficient of determination, R2, measures ratio of explained variance

Calculation

R2 =
SSreg

Stot
∈ [0,1] in OLS

I Total sum of squares (proportional
to sample variance)

SStot = ∑
i
(yi −µy )

2

I Regression sum of squares

SSreg = ∑
i
(ŷi −µy )

2

where ŷi is the predicted value

Multivariate Regression

I Adjusted R̂2 is an attempt to take into
account the phenomenon that R2

automatically increases with extra
explanatory variables

I Adjusted

R̂2 = 1−
(
1−R2) n−1

n−p−1
∈ [0,1]

where p is the total number of
regressors
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Linear Regression Models

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.912 2.586 6.15 1.4e-05 ***
## d$PlayerValue 2.323 0.674 3.44 0.0033 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I Estimate gives the least squares estimates of α and coefficients

I Std. Error shows standard errors σ̂i of each coefficient estimate
I t-value and P-value columns test whether any of the coefficients might

be equal to zero
I t-statistic is calculated as t = βi/σ̂i , if errors εεε follow a normal

distribution
→ large values of t indicate that the null hypothesis can be rejected and
that the corresponding coefficient is not zero

I P-value expresses the results of the hypothesis test as a significance
level; conventionally, P-values smaller than 0.05 are taken as evidence
that the coefficient is non-zero
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F -Test
I F -statistic tries to test the hypothesis that all coefficients (except the

intercept) are equal to zero

I H0: β1 = β2 = . . . = βk = 0

## F-statistic: 11.9 on 1 and 16 DF, p-value: 0.00333

→With a P-value of 0.00333, we can reject the null hypothesis at the
1%-significance level
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Plot: Fitted Model
Draw line of best fit in 2 dimensions via abline(model)

plot(d$PlayerValue, d$Goals, main="Bundesliga Season 2009/10",
xlab="Current Value of Players", ylab="Goals after 17 weeks")
m <- lm(d$Goals ~ d$PlayerValue)
abline(m)
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OLS Estimator: Assumptions

The OLS technique imposes several assumptions in order for the method to
give meaningful results

1 Homoscedasticity means that the error term has the same variance σ2

in each observation

2 Non-Autocorrelation requires that the errors are uncorrelated between
observations

3 No Linear Dependence prerequisites regressors to all be linearly
independent

Required package lmtest for the following R scripts:

library(lmtest) # load necessary library
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Regression Diagnostics
Perform default regression diagnostics, such as plots with residuals vs fitted
values, and Q-Q plot of residuals

plot(m) # show 4 plots with regression diagnostics
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Assumption: Homoscedacitity
I Error term has the same variance σ2 in each observation, i. e.

E
[
ε

2
i |X

]
= σ

2

I Violation is named heteroscedasticity

I Verify, for example, by:

Statistical Tests

I Breusch-Pagan test

I White test

I Goldfeld-Quandt test

I Harrison-McCabe test

Visual Regression Diagnostics

I Residuals vs fitted

I Residuals across
observations

I Histogram or Q-Q plot to
check normal distribution of
residuals
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Breusch-Pagan Test: Concept

Is the estimated variance of the residuals dependent on the regressors?
→ suppose regression model y = α + β1x1 + . . .+ xk + εεε

1 Get estimated errors ε̂εε

2 Estimate of error variance can be obtained from the average of the
squared values, i. e. ε̂εε

2

3 Assumption: variance of residuals ε̂εε does not depend on the
regressors x1, . . .xk

4 Estimate model ε̂εε
2

= γ0 + γ1x1 + . . .γk xk + ν

5 If an F -test confirms that the independent variables are jointly
significant→ the null hypothesis of homoscedasticity can be rejected
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Breusch-Pagan Test
I Generate simple linear model y = α + βx + εεε as demonstration
I Generate a regressor x

x <- rep(c(-1, 1), 50)

I Generate heteroscedastic and homoscedastic disturbances

err.heteroscedastic <- rnorm(100, sd = rep(c(1, 2), 50))
err.heteroscedastic[1:5]

## [1] 1.2630 -0.6525 1.3298 2.5449 0.4146

err.homoscedastic <- rnorm(100)
err.homoscedastic[1:5]

## [1] 0.78186 -0.77678 -0.61599 0.04658 -1.13039

I Create dependent variable y as a linear relationship

y.heteroscedastic <- 1 + x + err.heteroscedastic
y.homoscedastic <- 1 + x + err.homoscedastic
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Breusch-Pagan Test
I Perform Breusch-Pagan test via bptest(y ~ x1 + x2 + ...)
I Example with heteroscedasticity→ P-value ≤ 0.05

bptest(y.heteroscedastic ~ x)

##
## studentized Breusch-Pagan test
##
## data: y.heteroscedastic ~ x
## BP = 8.592, df = 1, p-value = 0.003376

I Example with homoscedasticity→ P-value > 0.05

bptest(y.homoscedastic ~ x)

##
## studentized Breusch-Pagan test
##
## data: y.homoscedastic ~ x
## BP = 0.3042, df = 1, p-value = 0.5812
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Normally Distributed Residuals

hist(m$residuals, freq = FALSE, breaks = seq(-12, 12, 2))
xx <- seq(min(m$residuals), max(m$residuals), 0.01)
lines(xx, dnorm(xx, mean = mean(m$residuals), sd = sd(m$residuals)))

Histogram of m$residuals

m$residuals
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Normally Distributed Residuals

qqnorm(m$residuals) # plot sample against theoretical normal distribution
qqline(m$residuals) # line that represents true normal distribution
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Residuals across Observations

plot(1:length(m$residuals), m$residuals)
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Assumption: Non-Autocorrelation
I Errors are uncorrelated between observations, i. e.

E[εiεj |X ] = 0 for i 6= j

I May be violated, e. g., in the context of time series data, panel data,
cluster samples, hierarchical data

I Example: if you witnessed a stock making gains over the past, you
might reasonably expect further upward movement

I Verify, for example, by
I plotting residuals across observations
I plotting or calculating the autocorrelation function (ACF) of the residuals
I performing Durbin-Watson test
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Autocorrelation Function
I Measures relationship between values separated from each other by a

given time lag

I Given time series data Y1, . . . ,YN as observations, with mean Ȳ

I Autocorrelation coefficient rh at lag h is given by

rh = Cor(Yt+h,Yt) =
ch

c0

normalized by c0 = σ2 (variance of Yt )

I Autocovariance function given by

ch = Cov(Yt+h,Yt) =
1
N

N−h

∑
t=1

(Yt − Ȳ )(Yt+h− Ȳ )

I Check if rh exceeds a given significance level
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Correlogram
I Plot autocorrelation function via acf(d)

data(unemployment)
u <- window(unemployment, start = 1895, end = 1956)
acf(u[, "UN"])
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→ If exceeds blue dashed line, then autocorrelation at a significant level
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Correlogram

# Hourly electricity prices from day-ahead auctions
ep <- read.csv("epexspot_auction_de_2009-2012.csv",

sep=",", header=FALSE)
acf(ep[,4])
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Durbin-Watson Test
I Detects the presence of autocorrelation in the residuals

I Test statistic

d =

N
∑

t=2
(εt − εt−1)2

N
∑

t=1
ε2

t

≈ 2(1− r1)

where r1 is the sample autocorrelation of the residuals

Test statistic Autocorrelation Interpretation

d = 2 r1 = 0 no autocorrelation
d = 0 r1 = +1 perfect positive autocorrelation
d = 4 r1 =−1 perfect negative autocorrelation

I H0: no autocorrelation (r1 = 0) present if d = 2

I HA: autocorrelation (r1 6= 0) present if d = 0 or d = 4
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Durbin-Watson Test
I Generate simple linear model y = α + βx + εεε as demonstration
I Generate a regressor x

x <- rep(c(-1, 1), 50)

I Generate disturbances without/with autocorrelation

err.noac <- rnorm(100)
## generate two AR(1) error terms with parameter
## rho = 0 (white noise) and rho = 0.9 respectively
err.ac <- filter(err.noac, 0.9, method="recursive")

I Create dependent variable y as a linear relationship

y.noac <- 1 + x + err.noac
y.ac <- 1 + x + err.ac
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Durbin-Watson Test
I Perform Durbin-Watson test via dwtest(y ~ x1 + x2 + ...)
I Example with no autocorrelation→ P-value > 0.05

dwtest(y.noac ~ x)

##
## Durbin-Watson test
##
## data: y.noac ~ x
## DW = 1.678, p-value = 0.06347
## alternative hypothesis: true autocorrelation is greater than 0

I Example with autocorrelation→ P-value ≤ 0.05
dwtest(y.ac ~ x)

##
## Durbin-Watson test
##
## data: y.ac ~ x
## DW = 0.3253, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0
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Assumption: No Linear Dependence
I Regressors X = [x1 | . . . | xk ] are all linearly independent, i. e.

Pr[rank(X) = k ] = 1,

that means X must almost surely have full column rank

I Violation called linear dependence or (perfect) multicollinearity

I Testing by Pearson correlation coefficient possible, but quite strict

I Instead: use Variance Inflation Factors or condition number of X
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Correlation Matrix
I Construction of a correlation matrix for the explanatory variables will

yield indications as to the likelihood that any given couplet of
right-hand-side variables are creating multicollinearity problems

I Correlation values (off-diagonal elements) of at least 0.4 are
interpreted as indicating a multicollinearity problem

I Example:

cor(as.data.frame(cbind(d$PlayerValue, d$Points)),
use="pair")

## V1 V2
## V1 1.000 0.544
## V2 0.544 1.000
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Variance Inflation Factors
I Quantifies the severity of multicollinearity

I Measures how much the variance (the square of the estimate’s
standard deviation) of an estimated regression coefficient has
increased because of collinearity

I Load necessary library car

library(car) # load necessary library

I Calculate via vif(m) for an already estimated model m

m <- lm(d$Goals ~ d$PlayerValue + d$Points)
vif(m)

## d$PlayerValue d$Points
## 1.42 1.42

vif(m) > 4 # problem?

## d$PlayerValue d$Points
## FALSE FALSE

I Indication of multicollinearity if above 4
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Condition Number
I Condition number κ measures the ill-conditioning of a matrix

I Equivalent to the numerical stability of its inversion (in finite precision)
or how full its rank is

I Condition number κ is computed via kappa(d)

kappa(as.data.frame(cbind(d$PlayerValue, d$Points)))

## [1] 15.77

I If the condition number is above 30 , the regression is said to have
multicollinearity
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Model Selection

Motivation

I Example: Which model should we select?
1 Model A consisting of 10 explanatory variables with an R2 = 0.6
2 Model B consisting of 6 explanatory variables with an R2 = 0.4

Information Criterion

I Deals with trade-off between complexity and the goodness of fit

I Cannot tell anything about how well a model fits the data in an
absolute sense

I Prefer model with the minimum information criterion value

I Examples: Akaike Information Criterion, Bayes Information Criterion
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Information Criterion: AIC and BIC
I Not only rewards goodness of fit, but also includes a penalty that is an

increasing function of the number of estimated parameters

I The penalty discourages overfitting

Akaike Information Criterion

I AIC = 2df−2 lnL

I df is the degrees of freedom
(number of parameters including
error εεε)

I L is the maximized value of the
likelihood function

Bayesian Information Criterion

I BIC = df · lnn−2 lnL

I Penalty is logarithmic with
observations n

I BIC puts stronger penalty on
additional parameters than AIC
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AIC and BIC
I logLik(m) extracts likelihood

# 3 degrees of freedom: alpha, beta, epsilon
m <- lm(d$Goals ~ d$PlayerValue)
logLik(m)[1] # extract likelihood from package stats

## [1] -57.24

I Use commands AIC(m) and BIC(m) to calculate each criterion

AIC(m)

## [1] 120.5

2 * 3 - 2 * logLik(m)[1]

## [1] 120.5

BIC(m)

## [1] 123.2

3 * log(18) - 2 * logLik(m)[1]

## [1] 123.2

49Data Analysis: Model Selection



Outline

1 Correlation

2 Linear Models

3 Assumptions of OLS Estimator

4 Model Selection

5 Linear Prediction Models

6 Wrap-Up

50Data Analysis: Linear Prediction Models



Prediction with Linear Models

BI Case Study

Until September 2009, the Freiburg soccer team has scored 19 goals with a
market value of e1.12m

Question: How many goals could be expected with a market value of
e5m?
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Prediction with Linear Models
I An already estimated linear model y = α + β1x1 + . . .+ βk xk + εεε can

be used to evaluate with new values x ′1, . . . ,x
′
k giving

y ′ = α + β1x ′1 + . . .+ βk x ′k

I Use the command predict(m, newdata=d) for a model m and
new data d

I Example

m <- lm(Goals ~ PlayerValue, data = d)
nd <- data.frame(PlayerValue = 5)
predict(m, newdata = nd)

## 1
## 27.52

→ the expected number of goals is 27.52
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Wrap-Up: OLS Estimator
I The OLS technique imposes several assumptions in order for the

method to give meaningful results
1 Homoscedasticity means that the error term has the same variance σ2

in each observation
2 Non-Autocorrelation requires that the errors are uncorrelated between

observations
3 No Linear Dependence prerequisites regressors to all be linearly

independent

I After verifying assumption, identify parameters with significant
influence on outcome→ t-value and P-value

I Look at overall model fit in terms of R2, adjusted R2 and F -test

I Select model that competes best in terms of information criterion

I Interpret magnitude and sign of coefficients, as well as significance
level
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Summary: Commands

Estimating Linear Models
cor(x, y) Correlation coefficient
cor.test(x, y) t-Test for Pearson correlation coefficient
lm(y ~ x1 + ...) Estimate linear model
summary(model) Detailed regression statistics
abline(model) Draw line of best fit

Verifying Assumptions of OLS Estimator
plot(model) Plots with regression diagnostics
bptest(model) Breusch-Pagan test→ heteroscedasticity
acf(d) Plot autocorrelation function
dwtest(model) Durbin-Watson test→ non-autocorrelation
vif(model) Variance Inflation Factor→ no linear dependence
kappa(X) Condition number of matrix
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Summary: Commands

Model Selection and Prediction
logLik(model)[1] Model likelihood
AIC(model) Akaike Information Criterion
BIC(model) Bayesian Information Criterion
predict(model, newdata=d) Prediction model outcome for new data

Further Exercises

→ Available online as homework
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