Data Analysis

Exercise: Business Intelligence (Part 4) Summer Term 2014 Stefan Feuerriegel

Today's Lecture

Objectives

- 1 Understanding the concept of linear regressions
- 2 Testing necessary requirements to perform ordinary least squares
- 3 Selecting and comparing models in terms of fit

Outline

- 1 Correlation
- 2 Linear Models
- 3 Assumptions of OLS Estimator
- 4 Model Selection
- 5 Linear Prediction Models
- 6 Wrap-Up

Outline

Linear Models

- 3 Assumptions of OLS Estimator
- 4 Model Selection
- 5 Linear Prediction Models
- 6 Wrap-Up

Correlation

BI Case Study

Question: Is there a correlation between value of players and goals of teams playing in the German Soccer League?

Data: bundesliga2009.csv

Club;PlayerValue;Goals;Points Bayern;10.4;34;33 Wolfsburg;5.34;32;24 HSV;4.38;34;31

• • •

Accessing Data

Reading data from file

d <- read.csv("bundesliga2009.csv", sep = ";", header = TRUE)</pre>

Showing first rows

head(d)

##		Club	PlayerValue	Goals	Points
##	1	Bayern	10.40	34	33
##	2	Wolfsburg	5.34	32	24
##	3	HSV	4.38	34	31
##	4	Leverkusen	4.11	35	35
##	5	Bremen	4.05	32	28
##	6	Stuttgart	4.01	16	16

Calculating total value of all players

```
sum(d$PlayerValue)
```

[1] 57.09

Data as Point Plot

plot (d\$PlayerValue, d\$Goals, main="Bundesliga Season 2009/10", xlab="Current Value of Players", ylab="Goals after 17 weeks") text(d\$PlayerValue, d\$Goals, d\$Club)

Bundesliga Season 2009/10

Pearson Correlation Coefficient

- Measures the linear correlation (dependence) between two variables
- ► For a stochastic variable

$$\rho_{X,Y} = \frac{\mathsf{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\mathsf{E}[(X - \mathsf{E}[X])(Y - \mathsf{E}[Y])]}{\sigma_X \sigma_Y} \in [-1, +1]$$

For a finite sample

$$r = \frac{\sum_{i} (x_{i} - \mu_{x})(y_{i} - \mu_{y})}{\sqrt{\sum_{i} (x_{i} - \mu_{x})^{2}} \sqrt{\sum_{i} (y_{i} - \mu_{y})^{2}}} \in [-1, +1]$$

with mean μ_x and μ_y respectively

cor(d\$PlayerValue, d\$Goals)
[1] 0.6525

 Other correlation coefficients (such as Spearman) exist in cases when data is not normally distributed

Pearson Correlation Coefficient

Hypothesis Testing

- Results are called statistically significant if it has been predicted as unlikely to have occurred by chance alone, according to a pre-determined threshold probability, the significance level
- ► H₀: null hypothesis associated with a contradiction to a theory
- ► H_A: alternative hypothesis associated with a theory to prove
- P-value gives probability, assuming the null hypothesis is true, of observing a result t at least as extreme as the test statistic t_c

Example: Clairvoyant Card Game

- ► A person is tested for clairvoyance → asked which of the four suits 25 randomly chosen cards belongs to
- The number of hits (correct answers) is called X
- To find evidence of clairvoyance

$$H_0: p = \frac{1}{4}$$
 (just guessing) $H_A: p > \frac{1}{4}$ (true clairvoyant)

What is the critical number t_c of hits, at which we assume clairvoyance?

$$\mathsf{P}[\mathsf{reject}\ H_0 \,|\, H_0 \text{ is valid}] = \mathsf{P}[X \ge t_c \,|\, p = 1/4] \le \alpha$$

with maximum acceptable probability lpha of false positives

► We choose the smallest t_c that gives a probability below α → e.g. with $\alpha = 1$ %, we get $t_c = 13$

t-Test for Pearson Correlation Coefficient

- Test measures if Pearson correlation coefficients are significant given a threshold
- ► Null hypothesis H_0 : $\rho = 0$ (i.e. no linear relationship)
- ► Alternative hypothesis H_A : $\rho \neq 0$ (or $\rho > 0 \lor \rho < 0$)
- ► Variable $t = \frac{r\sqrt{n-2}}{1-r^2}$ has Student's *t*-distribution in the null case, with
 - ho correlation of the population
 - r correlation of the sample
 - n size of sample

Pearson Correlation Coefficient

```
cor.test(d$PlayerValue, d$Goals)
##
##
   Pearson's product-moment correlation
##
## data: d$PlayerValue and d$Goals
\#\# t = 3.445, df = 16, p-value = 0.003332
## alternative hypothesis: true correlation is not equal to 0
  95 percent confidence interval:
##
## 0.267 0.858
## sample estimates:
##
  cor
## 0.6525
```

 \rightarrow Although the correlation is relatively small, the P-value of 0.003332 < 0.01 indicates a significant linear dependence at the 1 %-significance level

Outline

1 Correlation

2 Linear Models

- 3 Assumptions of OLS Estimator
- 4 Model Selection
- 5 Linear Prediction Models
- 6 Wrap-Up

Linear Models

- Linear Model: $\mathbf{y} = \alpha + \beta_1 \mathbf{x}_1 + \ldots + \beta_k \mathbf{x}_k + \boldsymbol{\varepsilon}$
 - ► Given y named observations, response or dependent variable
 - ► Given x₁,..., x_k named regressors, exogenous or independent variables
 - Given residuals $\boldsymbol{\varepsilon}$ with entries $\varepsilon_1, \ldots, \varepsilon_N$
- ► Estimate intercept α and the coefficients β₁,..., β_k by minimizing error terms ε, e.g. via ordinary least squares (OLS) estimator

$$\min_{\alpha,\beta_1,\ldots,\beta_k} \|\boldsymbol{\varepsilon}\| = \min_{\alpha,\beta_1,\ldots,\beta_k} \|\boldsymbol{y} - (\alpha + \beta_1 \boldsymbol{x}_1 + \ldots + \beta_k \boldsymbol{x}_k)\|$$

 \rightarrow important to test assumptions to avoid confounded results

Linear Regression

```
m <- lm(d$Goals ~ d$PlayerValue)</pre>
summary(m)
##
## Call:
## lm(formula = d$Goals ~ d$PlaverValue)
##
## Residuals:
##
  Min 10 Median 30 Max
## -10.51 -4.95 1.26 3.63 9.54
##
## Coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.912 2.586 6.15 1.4e-05 ***
## d$PlayerValue 2.323 0.674 3.44 0.0033 **
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.17 on 16 degrees of freedom
## Multiple R-squared: 0.426, Adjusted R-squared: 0.39
## F-statistic: 11.9 on 1 and 16 DF, p-value: 0.00333
```

Notation

Alternatively, data can be specified via parameter data=

```
# Both variants yield the same result
lm(d$Goals ~ d$PlayerValue)
lm(Goals ~ PlayerValue, data = d)
```

► Operator dependent ~ . uses all other columns as regressors

```
colnames(d)
## [1] "Club" "PlayerValue" "Goals" "Points"
# Both variants yield the same result
lm(Goals ~ Club + PlayerValue + Points, data = d)
lm(Goals ~ ., data = d)
```

Multivariate regressions feature more than one independent variable

R^2 : Coefficient of Determination

Multiple R-squared: 0.426, Adjusted R-squared: 0.39

Coefficient of determination, R^2 , measures ratio of explained variance

Calculation

$$\mathsf{R}^2 = rac{\mathcal{SS}_{\mathsf{reg}}}{\mathcal{S}_{\mathsf{tot}}} \in [0,1] \, \, \mathsf{in} \, \, \mathsf{OLS}$$

 Total sum of squares (proportional to sample variance)

$$SS_{\rm tot} = \sum_i (y_i - \mu_y)^2$$

Regression sum of squares

$$SS_{\mathsf{reg}} = \sum_{i} (\hat{y}_i - \mu_y)^2$$

where
$$\hat{y}_i$$
 is the predicted value
Data Analysis: Linear Models

Multivariate Regression

- Adjusted Â² is an attempt to take into account the phenomenon that R² automatically increases with extra explanatory variables
- Adjusted

$$\hat{R}^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1} \in [0, 1]$$

where *p* is the total number of regressors

Linear Regression Models

##	Coefficients:				
##		Estimate Std.	Error t va	lue Pr(> t)	
##	(Intercept)	15.912	2.586 6	.15 1.4e-05	* * *
##	d\$PlayerValue	2.323	0.674 3	.44 0.0033	* *
##					
##	Signif. codes:	: 0 '***' 0.0	01 '**' 0.03	1 '*' 0.05 '.	.' 0.1 ' ' 1

- Estimate gives the least squares estimates of α and coefficients
- Std. Error shows standard errors $\hat{\sigma}_i$ of each coefficient estimate
- t-value and P-value columns test whether any of the coefficients might be equal to zero
 - ► *t*-statistic is calculated as $t = \beta_i / \hat{\sigma}_i$, if errors $\boldsymbol{\varepsilon}$ follow a normal distribution

 \rightarrow large values of *t* indicate that the null hypothesis can be rejected and that the corresponding coefficient is not zero

 P-value expresses the results of the hypothesis test as a significance level; conventionally, P-values smaller than 0.05 are taken as evidence that the coefficient is non-zero

F-Test

 F-statistic tries to test the hypothesis that all coefficients (except the intercept) are equal to zero

$$\bullet \quad H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$

F-statistic: 11.9 on 1 and 16 DF, p-value: 0.00333

 \rightarrow With a P-value of 0.00333, we can reject the null hypothesis at the 1%-significance level

Plot: Fitted Model

Draw line of best fit in 2 dimensions via abline (model)

plot(d\$PlayerValue, d\$Goals, main="Bundesliga Season 2009/10", xlab="Current Value of Players", ylab="Goals after 17 weeks") m <- lm(d\$Goals ~ d\$PlayerValue) abline(m)

Outline

2 Linear Models

3 Assumptions of OLS Estimator

- 4 Model Selection
- 5 Linear Prediction Models
- 6 Wrap-Up

OLS Estimator: Assumptions

The OLS technique imposes several assumptions in order for the method to give meaningful results

- 1 Homoscedasticity means that the error term has the same variance σ^2 in each observation
- 2 Non-Autocorrelation requires that the errors are uncorrelated between observations
- 3 No Linear Dependence prerequisites regressors to all be linearly independent

Required package <code>lmtest</code> for the following R scripts:

library(lmtest) # load necessary library

Regression Diagnostics

Perform default regression diagnostics, such as plots with residuals vs fitted values, and Q-Q plot of residuals

plot(m) # show 4 plots with regression diagnostics

Outline

Assumptions of OLS Estimator Homoscedacitity

- Non-Autocorrelation
- No Linear Dependence

Assumption: Homoscedacitity

• Error term has the same variance σ^2 in each observation, i.e.

$$\mathsf{E}\left[\varepsilon_{i}^{2}\,|\,X\right]=\sigma^{2}$$

- Violation is named heteroscedasticity
- Verify, for example, by:

Statistical Tests

- Breusch-Pagan test
- White test
- Goldfeld-Quandt test
- Harrison-McCabe test

Visual Regression Diagnostics

- Residuals vs fitted
- Residuals across observations
- Histogram or Q-Q plot to check normal distribution of residuals

Breusch-Pagan Test: Concept

Is the estimated variance of the residuals dependent on the regressors?

- \rightarrow suppose regression model $\mathbf{y} = \alpha + \beta_1 \mathbf{x}_1 + \ldots + \mathbf{x}_k + \boldsymbol{\varepsilon}$
 - 1 Get estimated errors $\hat{\boldsymbol{\varepsilon}}$
 - 2 Estimate of error variance can be obtained from the average of the squared values, i. e. $\hat{\epsilon}^2$
 - 3 Assumption: variance of residuals $\hat{\boldsymbol{\varepsilon}}$ does not depend on the regressors $\boldsymbol{x}_1, \dots \boldsymbol{x}_k$
 - 4 Estimate model $\hat{\boldsymbol{\varepsilon}}^2 = \gamma_0 + \gamma_1 \boldsymbol{x}_1 + \dots \gamma_k \boldsymbol{x}_k + v$
 - If an *F*-test confirms that the independent variables are jointly significant → the null hypothesis of homoscedasticity can be rejected

Breusch-Pagan Test

- Generate simple linear model $\mathbf{y} = \alpha + \beta \mathbf{x} + \boldsymbol{\varepsilon}$ as demonstration
- Generate a regressor x

```
x <- rep(c(-1, 1), 50)
```

Generate heteroscedastic and homoscedastic disturbances

```
err.heteroscedastic <- rnorm(100, sd = rep(c(1, 2), 50))
err.heteroscedastic[1:5]
## [1] 1.2630 -0.6525 1.3298 2.5449 0.4146
err.homoscedastic <- rnorm(100)
err.homoscedastic[1:5]
## [1] 0.78186 -0.77678 -0.61599 0.04658 -1.13039</pre>
```

► Create dependent variable y as a linear relationship

```
y.heteroscedastic <- 1 + x + err.heteroscedastic y.homoscedastic <- 1 + x + err.homoscedastic
```

Breusch-Pagan Test

- Perform Breusch-Pagan test via bptest (y ~ x1 + x2 + ...)
- ► Example with heteroscedasticity → P-value ≤ 0.05

```
bptest (y.heteroscedastic ~ x)
##
## studentized Breusch-Pagan test
##
## data: y.heteroscedastic ~ x
## BP = 8.592, df = 1, p-value = 0.003376
```

► Example with homoscedasticity → P-value > 0.05

```
bptest (y.homoscedastic ~ x)
##
## studentized Breusch-Pagan test
##
## data: y.homoscedastic ~ x
## BP = 0.3042, df = 1, p-value = 0.5812
```

Normally Distributed Residuals

```
hist(m$residuals, freq = FALSE, breaks = seq(-12, 12, 2))
xx <- seq(min(m$residuals), max(m$residuals), 0.01)
lines(xx, dnorm(xx, mean = mean(m$residuals), sd = sd(m$residuals)))</pre>
```


Normally Distributed Residuals

qqnorm(m\$residuals) # plot sample against theoretical normal distribution
qqline(m\$residuals) # line that represents true normal distribution

Normal Q–Q Plot

Residuals across Observations

plot(1:length(m\$residuals), m\$residuals)

ightarrow works better with residuals across time

Outline

Assumptions of OLS Estimator

- Homoscedacitity
- Non-Autocorrelation
- No Linear Dependence

Assumption: Non-Autocorrelation

► Errors are uncorrelated between observations, i. e.

 $\mathsf{E}[\varepsilon_i \varepsilon_j | X] = 0$ for $i \neq j$

- May be violated, e.g., in the context of time series data, panel data, cluster samples, hierarchical data
- Example: if you witnessed a stock making gains over the past, you might reasonably expect further upward movement
- Verify, for example, by
 - plotting residuals across observations
 - plotting or calculating the autocorrelation function (ACF) of the residuals
 - performing Durbin-Watson test

Autocorrelation Function

- Measures relationship between values separated from each other by a given time lag
- Given time series data Y_1, \ldots, Y_N as observations, with mean \overline{Y}
- Autocorrelation coefficient r_h at lag h is given by

$$r_h = \operatorname{Cor}(Y_{t+h}, Y_t) = \frac{c_h}{c_0}$$

normalized by $c_0 = \sigma^2$ (variance of Y_t)

Autocovariance function given by

$$c_h = \text{Cov}(Y_{t+h}, Y_t) = \frac{1}{N} \sum_{t=1}^{N-h} (Y_t - \bar{Y})(Y_{t+h} - \bar{Y})$$

Check if r_h exceeds a given significance level

Correlogram

Plot autocorrelation function via acf (d)

```
data(unemployment)
u <- window(unemployment, start = 1895, end = 1956)
acf(u[, "UN"])</pre>
```

Series u[, "UN"]

ightarrow If exceeds blue dashed line, then autocorrelation at a significant level

Correlogram

Series ep[, 4]

Durbin-Watson Test

- Detects the presence of autocorrelation in the residuals
- Test statistic

$$d = \frac{\sum_{t=2}^{N} (\varepsilon_t - \varepsilon_{t-1})^2}{\sum_{t=1}^{N} \varepsilon_t^2} \approx 2(1 - r_1)$$

where r_1 is the sample autocorrelation of the residuals

Test statistic	Autocorrelation	Interpretation
<i>d</i> = 2	<i>r</i> ₁ = 0	no autocorrelation
d = 0	<i>r</i> ₁ = +1	perfect positive autocorrelation
<i>d</i> = 4	$r_1 = -1$	perfect negative autocorrelation

- H_0 : no autocorrelation ($r_1 = 0$) present if d = 2
- ► H_A : autocorrelation ($r_1 \neq 0$) present if d = 0 or d = 4

Durbin-Watson Test

- Generate simple linear model $\mathbf{y} = \alpha + \beta \mathbf{x} + \boldsymbol{\varepsilon}$ as demonstration
- Generate a regressor x

```
x <- rep(c(-1, 1), 50)
```

Generate disturbances without/with autocorrelation

```
err.noac <- rnorm(100)
## generate two AR(1) error terms with parameter
## rho = 0 (white noise) and rho = 0.9 respectively
err.ac <- filter(err.noac, 0.9, method="recursive")</pre>
```

Create dependent variable y as a linear relationship

y.noac <- 1 + x + err.noac y.ac <- 1 + x + err.ac

Durbin-Watson Test

- ▶ Perform Durbin-Watson test via dwtest (y ~ x1 + x2 + ...)
- ► Example with no autocorrelation → *P*-value > 0.05

```
dwtest(y.noac ~ x)
##
## Durbin-Watson test
##
## data: y.noac ~ x
## DW = 1.678, p-value = 0.06347
## alternative hypothesis: true autocorrelation is greater than 0
```

► Example with autocorrelation → *P*-value ≤ 0.05

```
dwtest(y.ac ~ x)
##
## Durbin-Watson test
##
## data: y.ac ~ x
## DW = 0.3253, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0</pre>
```

Outline

- Homoscedacitity
- Non-Autocorrelation
- No Linear Dependence

Assumption: No Linear Dependence

► Regressors $X = [\mathbf{x}_1 | \dots | \mathbf{x}_k]$ are all linearly independent, i. e.

 $\Pr[\operatorname{rank}(X) = k] = 1,$

that means X must almost surely have full column rank

- Violation called linear dependence or (perfect) multicollinearity
- ► Testing by Pearson correlation coefficient possible, but quite strict
- Instead: use Variance Inflation Factors or condition number of X

Correlation Matrix

- Construction of a correlation matrix for the explanatory variables will yield indications as to the likelihood that any given couplet of right-hand-side variables are creating multicollinearity problems
- Correlation values (off-diagonal elements) of at least 0.4 are interpreted as indicating a multicollinearity problem
- Example:

```
cor(as.data.frame(cbind(d$PlayerValue, d$Points)),
    use="pair")
## V1 V2
## V1 1.000 0.544
## V2 0.544 1.000
```

Variance Inflation Factors

- Quantifies the severity of multicollinearity
- Measures how much the variance (the square of the estimate's standard deviation) of an estimated regression coefficient has increased because of collinearity
- Load necessary library car

library(car) # load necessary library

Calculate via vif (m) for an already estimated model m

```
m <- lm(d$Goals ~ d$PlayerValue + d$Points)
vif(m)
## d$PlayerValue d$Points
## 1.42 1.42
vif(m) > 4 # problem?
## d$PlayerValue d$Points
## FALSE FALSE
```

Indication of multicollinearity if above 4

Data Analysis: Assumptions of OLS Estimator

Condition Number

- Condition number κ measures the ill-conditioning of a matrix
- Equivalent to the numerical stability of its inversion (in finite precision) or how full its rank is
- ► Condition number *κ* is computed via kappa (d)

```
kappa(as.data.frame(cbind(d$PlayerValue, d$Points)))
## [1] 15.77
```

 If the condition number is above 30, the regression is said to have multicollinearity

Outline

1 Correlation

- 2 Linear Models
- 3 Assumptions of OLS Estimator
- 4 Model Selection
 - 5 Linear Prediction Models

6 Wrap-Up

Model Selection

Motivation

- Example: Which model should we select?
 - Model A consisting of 10 explanatory variables with an $R^2 = 0.6$
 - 2 Model B consisting of 6 explanatory variables with an $R^2 = 0.4$

Information Criterion

- Deals with trade-off between complexity and the goodness of fit
- Cannot tell anything about how well a model fits the data in an absolute sense
- Prefer model with the minimum information criterion value
- ► Examples: Akaike Information Criterion, Bayes Information Criterion

Information Criterion: AIC and BIC

- Not only rewards goodness of fit, but also includes a penalty that is an increasing function of the number of estimated parameters
- The penalty discourages overfitting

Akaike Information Criterion

- AIC = 2 df 2 ln L
- df is the degrees of freedom (number of parameters including error ε)
- L is the maximized value of the likelihood function

Bayesian Information Criterion

- $\blacksquare BIC = df \cdot \ln n 2 \ln L$
- Penalty is logarithmic with observations n
- BIC puts stronger penalty on additional parameters than AIC

AIC and BIC

logLik (m) extracts likelihood

```
# 3 degrees of freedom: alpha, beta, epsilon
m <- lm(d$Goals ~ d$PlayerValue)
logLik(m)[1] # extract likelihood from package stats
## [1] -57.24</pre>
```

► Use commands AIC (m) and BIC (m) to calculate each criterion

AIC(m)	BIC (m)
## [1] 120.5	## [1] 123.2
2 * 3 - 2 * logLik (m)[1]	3 * log(18) - 2 * logLik(m)[1]
## [1] 120.5	## [1] 123.2

Outline

1 Correlation

- 2 Linear Models
- 3 Assumptions of OLS Estimator
- 4 Model Selection
- 5 Linear Prediction Models
- 6 Wrap-Up

Prediction with Linear Models

BI Case Study

Until September 2009, the Freiburg soccer team has scored 19 goals with a market value of ${\in}\,1.12\,\text{m}$

Question: How many goals could be expected with a market value of $\notin 5 \text{ m}$?

Prediction with Linear Models

► An already estimated linear model y = α + β₁x₁ + ... + β_kx_k + ε can be used to evaluate with new values x'₁,..., x'_k giving

$$y' = \alpha + \beta_1 x'_1 + \ldots + \beta_k x'_k$$

- Use the command predict (m, newdata=d) for a model m and new data d
- Example

```
m <- lm(Goals ~ PlayerValue, data = d)
nd <- data.frame(PlayerValue = 5)
predict(m, newdata = nd)
## 1
## 27.52</pre>
```

ightarrow the expected number of goals is 27.52

Outline

1 Correlation

- 2 Linear Models
- 3 Assumptions of OLS Estimator
- 4 Model Selection
- 5 Linear Prediction Models

6 Wrap-Up

Wrap-Up: OLS Estimator

- The OLS technique imposes several assumptions in order for the method to give meaningful results
 - 1 Homoscedasticity means that the error term has the same variance σ^2 in each observation
 - 2 Non-Autocorrelation requires that the errors are uncorrelated between observations
 - 3 No Linear Dependence prerequisites regressors to all be linearly independent
- ► After verifying assumption, identify parameters with significant influence on outcome → t-value and P-value
- Look at overall model fit in terms of R^2 , adjusted R^2 and *F*-test
- Select model that competes best in terms of information criterion
- Interpret magnitude and sign of coefficients, as well as significance level

Summary: Commands

Estimating Linear Models			
cor(x, y)	Correlation coefficient		
cor.test(x, y)	t-Test for Pearson correlation coefficient		
lm(y ~ x1 +)	Estimate linear model		
summary(model)	Detailed regression statistics		
abline(model)	Draw line of best fit		

Verifying Assumptions of OLS Estimator

Plots with regression diagnostics
Breusch-Pagan test $ ightarrow$ heteroscedasticity
Plot autocorrelation function
Durbin-Watson test \rightarrow non-autocorrelation
Variance Inflation Factor $ ightarrow$ no linear dependence
Condition number of matrix

Summary: Commands

Model Selection and Prediction

logLik(model)[1]	Model li
AIC(model)	Akaike I
BIC(model)	Bayesia
<pre>predict(model, newdata=d)</pre>	Prediction

Model likelihood Akaike Information Criterion Bayesian Information Criterion Prediction model outcome for new data

Further Exercises

ightarrow Available online as homework