Homework: Text Mining

This homework sheet will test your knowledge of text mining in R.

15

a) Load the package tm and create a corpus from the twitter tweets that were sent on Election Day 2012.

b) The final poll closing times on Election Day were 11 p.m. EST at the west coast (except Hawaii). Convert this time into CET (Central European Time).

Solution:

By looking at the world map, you see that there is a time difference of 6 hours. Thus, the correct answer is November 7, 5 a.m. Alternatively, you can use R to do the time conversion.

```
date <- ISOdate(2012, 11, 6, 23, 0, 0, tz = "EST")
date.eu <- as.POSIX1t(date, format = "%Y/%m/%d %H:%M", tz = "CET")
date.eu
## [1] "2012-11-07 05:00:00 CET"</pre>
```

The above code extracts the tweets shortly before and after poll closing.

1

c) Transform the corpus by stripping the whitespaces, removing numbers and punctuation and setting all letters to lower cases.

Solution:

```
elections.corpus <- tm_map(elections.corpus, stripWhitespace)
elections.corpus <- tm_map(elections.corpus, tolower)
elections.corpus <- tm_map(elections.corpus, removeNumbers)
elections.corpus <- tm_map(elections.corpus, removePunctuation)</pre>
```

d) Remove English stopwords and transform your corpus to a plain text.

Solution:

```
elections.corpus <- tm_map(elections.corpus, removeWords, stopwords("english"))
if (packageVersion("tm") $minor <= 5) {
    elections.corpus <- tm_map(elections.corpus, PlainTextDocument)
} else {
    elections.corpus <- tm_map(elections.corpus, PlainTextDocument)
}</pre>
```

e) Perform stemming on your corpus.

Solution:

```
elections.corpus <- tm_map(elections.corpus, stemDocument, language = "english")
```

f) Calculate the term-document (TDM) matrix corresponding to your corpus.

Solution:

```
tdm <- TermDocumentMatrix(elections.corpus)
## Warning: invalid document identifiers</pre>
```

g) Give the words, that occur at least 100 times in your TDM.

Solution:

```
findFreqTerms(tdm, 100)
## [1] "elect" "obama" "romney"
```

h) Remove the terms, that occur in less than 40 % of your documents.

Solution:

Page: 2 of 6

```
tdm.small <- removeSparseTerms(tdm, 0.4)
```

i) Use k-means to cluster the data with k = 2. Show a few exemplary tweets of each cluster.

Solution:

```
k <- kmeans(t(tdm.small), 2)
```

j) Give an interpretation of the size of the cluster and the within-cluster sum of squares.

Solution:

```
k$size
## [1] 1077 76

sum(k$tot.withinss)
## [1] 105.5
```

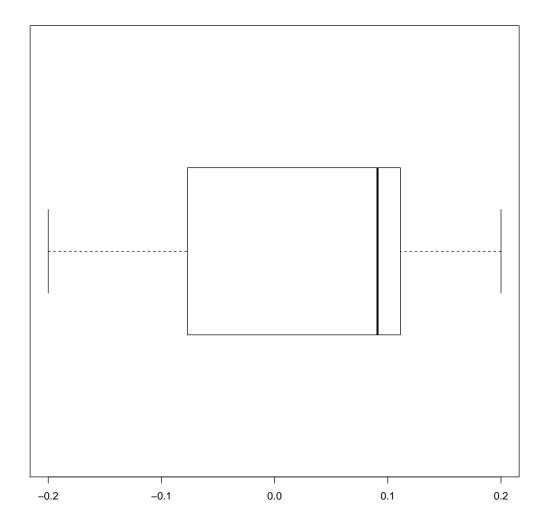
There is a larger and a smaller cluster. Maybe one cluster matches tweets addressing Obama and one addressing Romney (and elections in general). As Obama was presumably voted by younger people, a larger portion of tweets is devoted to him.

Page: 3 of 6

k) Calculate the Net-Optimism sentiment of the corpus and plot all non-zero sentiment values as a boxplot. You need to create a TDM of the positive and negative words to do so.

Solution:

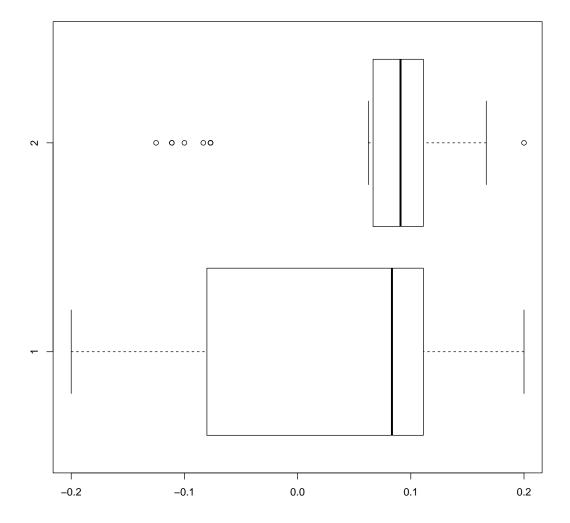
```
pos <- as.data.frame(read.csv("positivity.txt", header = FALSE))
tdm.pos <- TermDocumentMatrix(elections.corpus, list(dictionary = t(pos)))


## Warning: invalid document identifiers

neg <- as.data.frame(read.csv("negativity.txt", header = FALSE))
tdm.neg <- TermDocumentMatrix(elections.corpus, list(dictionary = t(neg)))

## Warning: invalid document identifiers

N <- length(elections.corpus)
sentiment <- numeric(N)
for (i in 1:N) {
   sentiment[i] <- (sum(tdm.pos[, i]) - sum(tdm.neg[, i]))/sum(tdm[, i])
}


boxplot(sentiment[sentiment != 0], horizontal = TRUE)</pre>
```


There are more documents with a positive Net-Optimism sentiment than with a negative one.

I) Is there a difference in the non-zero sentiment score before and after poll closing. Analyze visually!

Solution:

or

There are more documents with a positive Net-Optimism sentiment than with a negative one.