Elementary Concepts in Linear Algebra

Number Representations

a) Convert 1110000101 from base 2 into base 10 by hand.
b) Convert 852 from base 10 into base 2 by hand.
c) Repeat the above base 2 conversions by utilizing R.
d) Convert 756001 from base 8 into base 10 by hand.
e) Convert 9530 from base 10 into base 8 by hand.
f) Repeat the above base 2 conversions by utilizing R.
g) Write a function dec_to_bin that takes a decimal number as input and outputs its
binary representation in a vector of 1 s and 0 s . Instead of using the build-in conversion from R, implement this with help of an appropriate loop. Then test its correctness by calculating the binary representation of 852 .

Polynomials

h) Write a function my_power in R that calculates the exponentiation of two numbers b^{n} using a for-loop. Assume that $n \in \mathbb{N}$. Finally, use this function to calculate 7^{3} and 5^{0}.
i) Create a function horner that evaluates a polynomial at given point $x_{0}=3$ by utilizing the Horner scheme for a given vector of polynomial coefficients. For example, the polynomial $2 x^{4}-4 x^{3}-5 x^{2}+7 x+11$ corresponds to a vector representation $\mathrm{c}(2,-4,-5,7,11)$ in R .

Linear Algebra

j) Calculate the dot product for the following two vectors by hand and with the help of R.

$$
\boldsymbol{x}=\left[\begin{array}{c}
5 \\
-1 \\
2
\end{array}\right] \quad \text { and } \quad \boldsymbol{y}=\left[\begin{array}{c}
8 \\
7 \\
-3
\end{array}\right] .
$$

k) Write a function dot_product in R to calculate the dot product of the vectors from the previous exercise. Use a for loop to calculate the result.
I) Write a function mult_matrix_vector in R to multiply a matrix by a vector. Use a for loop to calculate the result. Apply your function to A and \boldsymbol{x} defined by

$$
A=\left[\begin{array}{cc}
4 & 3 \\
-1 & 7 \\
0 & 12
\end{array}\right] \quad \text { and } \quad \boldsymbol{x}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right]
$$

and then compare to the built-in functionality within R .
m) Write a function mult_matrix_matrix in R to multiply two matrices. Use a for loop to calculate the result. Apply your function to A and B with

$$
A=\left[\begin{array}{cc}
4 & 3 \\
-1 & 7 \\
0 & 12
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
3 & 2 & 5 & 1 \\
-2 & 0 & 4 & 1
\end{array}\right]
$$

Hint: The result should be $A B=\left[\begin{array}{cccc}6 & 8 & 32 & 7 \\ -17 & -2 & 23 & 6 \\ -24 & 0 & 48 & 12\end{array}\right]$.
n) Consider the vector

$$
\boldsymbol{x}=\left[\begin{array}{c}
-3 \\
-4 \\
-1 \\
0 \\
2
\end{array}\right]
$$

What are its L^{1}-, L^{2} and 4-norm?
o) Calculate the inverse (or pseudoinverse, depending on what is necessary) for the following matrix. Double-check subsequently.

$$
A=\left[\begin{array}{cc}
3 & 7 \\
-1 & 2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
2 & 8 \\
3 & 12
\end{array}\right]
$$

p) Find the determinant, eigenvalues and eigenvectors to the matrix

$$
A=\left[\begin{array}{ll}
3 & 3 \\
1 & 1
\end{array}\right]
$$

by hand.
q) Calculate the determinates, eigenvalues and eigenvectors of the two matrices

$$
A_{1}=\left[\begin{array}{ll}
3 & 3 \\
1 & 1
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

with the help of R .
r) Are the following two matrices positive or negative definite?

$$
A_{1}=\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

