Elementary Concepts in Numerical Analysis

Differentiation

a) Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=x$ is continuous and differentiable.
b) Show mathematically why $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=|x|$ is not differentiable at $x_{0}=0$.
c) Use the chain rule (amongst others) to calculate the derivative of $2 x^{3}+x^{2} \log 4 x$.
d) Use R to derive the following expressions symbolically:

- $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{4}+2 x^{2}+\exp x\right)$
- $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left(x^{4}+2 x^{2}+\exp x\right)$

Calculate the value of the first derivative at point $x=3$
e) Use R to derive the following expressions symbolically:

- $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{4}+2 x^{2}+\exp x\right]$
- $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left[x^{4}+2 x^{2}+\exp x\right]$

Calculate the value of the first derivative at point $x=3$.
f) Approximate the first derivative at point $x=0.1$ via forward, backward and centered differences for

$$
f(x)=3 x^{4}+2 x \quad \text { and } \quad g(x)=\sin \frac{1}{x} .
$$

Subsequently, compare the approximated derivatives to their true values. Use $h=$ 10^{-6}.
g) Calculate the 2 nd order central differences at point $x=0.01$ for

$$
g(x)=\sin \frac{1}{x}
$$

and compare to the true value from a symbolic differentiation. Use $h=10^{-6}$.
h) Derive a formulate to approximate a Hessian matrix of a function $f(x, y)$ using forward differences. Let h be an arbitrary step size.
i) Write a user-defined function that can approximate a Hessian matrix of $f(x, y)$ using forward differences. Test your function with $f(x, y)=2 x+3 x y^{2}+y^{3}+1$ at a point $\left(x_{1}, x_{2}\right)=(4,5)$ with a given step size $h=0.0001$.
Note: You can also pass function names as arguments; see the following example.

```
f <- function(x) x^2
g <- function(x, func) func(x) +2
g(3, f)
## [1] 11
```

j) Consider the following function $f(x, y)=2 x+3 x y^{2}+y^{3}+1$. Use the function optimHess in R to approximate the Hessian matrix, i.e. with forward differences at a point $\left(x_{1}, x_{2}\right)=(4,5)$ with a given step size $h=0.0001$.

Taylor Approximation

k) Define a Taylor series mathematically.
I) What is a Maclaurin series?
m) What is the Taylor series for e^{x} with $x_{0}=0$?
n) What is the Taylor series for $\ln 1-x$ with $x_{0}=0$?
o) What is the Taylor series for $\ln 1+x$ with $x_{0}=0$?
p) What is the Taylor series for $\frac{1}{1-x}$ with $x_{0}=0$?
q) What is the 2-nd order Taylor approximation of a function $f(x, y)=\ln 1+x+$ $\ln 1-y$ around $\left(x_{0}, y_{0}\right)=(0,0)$?
Hint: a Taylor Series in 2 variables can be written as

$$
\begin{aligned}
f(x, y)=f\left(x_{0}, y_{0}\right) & +\left[\left(x-x_{0}\right) \frac{\partial}{\partial x}+\left(y-y_{0}\right) \frac{\partial}{\partial y}\right] f\left(x_{0}, y_{0}\right) \\
& +\frac{1}{2!}\left[\left(x-x_{0}\right) \frac{\partial}{\partial x}+\left(y-y_{0}\right) \frac{\partial}{\partial y}\right]^{2} f\left(x_{0}, y_{0}\right)+\ldots
\end{aligned}
$$

r) What is the 2-nd order Taylor approximation of a function

$$
f(x, y)=\sqrt[5]{x^{3}+e^{y}}
$$

around $\left(x_{0}, y_{0}\right)=(0,0)$?
s) Calculate the Taylor approximation of $f(x)=\sin x$ up to degree 4 around $x_{0}=0$. Then evaluate and compare it for $x=0.1$.
t) Visualize the function $f(x)=\log x+1$ and its Taylor approximation for $x_{0}=0$.

Optimality Conditions

u) Find the stationary points of the function $f(x, y)=x^{3}+3 y-y^{3}-3 x$ and analyze their nature using Sylvester's Rule.
v) Consider the function $f(x, y)=\sin x \cdot \cos x$. First of all, plot the function nicely to get an impression of its curvature. Then, consider the points

$$
\boldsymbol{p}_{1}=\left[\begin{array}{c}
\frac{\pi}{2} \\
0
\end{array}\right] \text { and } \boldsymbol{p}_{2}=\left[\begin{array}{c}
0 \\
\frac{\pi}{2}
\end{array}\right]
$$

and check their first and second order optimality conditions using R. What type of stationary points do they belong to?
w) Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=x^{2}$ is convex.

