Elementary Concepts in Numerical Analysis

Differentiation

- **a)** Prove that the function $f : \mathbb{R} \to \mathbb{R}$ with f(x) = x is continuous and differentiable.
- **b)** Show mathematically why $f : \mathbb{R} \to \mathbb{R}$ with f(x) = |x| is not differentiable at $x_0 = 0$.
- **c)** Use the chain rule (amongst others) to calculate the derivative of $2x^3 + x^2 \log 4x$.
- **d)** Use R to derive the following expressions symbolically:
 - $\frac{\mathrm{d}}{\mathrm{d}x}\left(x^4 + 2x^2 + \exp x\right)$
 - $\frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(x^4 + 2x^2 + \exp x \right)$

Calculate the value of the first derivative at point x = 3

- e) Use R to derive the following expressions symbolically:
 - $\frac{\mathrm{d}}{\mathrm{d}x} \left[x^4 + 2x^2 + \exp x \right]$
 - $\frac{\mathrm{d}^2}{\mathrm{d}x^2} \left[x^4 + 2x^2 + \exp x \right]$

Calculate the value of the first derivative at point x = 3.

f) Approximate the first derivative at point x = 0.1 via forward, backward and centered differences for

$$f(x) = 3x^4 + 2x$$
 and $g(x) = \sin \frac{1}{x}$.

Subsequently, compare the approximated derivatives to their true values. Use $h = 10^{-6}$.

g) Calculate the 2nd order central differences at point x = 0.01 for

$$g(x) = \sin\frac{1}{x}.$$

and compare to the true value from a symbolic differentiation. Use $h = 10^{-6}$.

3

5

3

2	
э	
~	

2	
3	

1

- **h)** Derive a formulate to approximate a Hessian matrix of a function f(x, y) using forward differences. Let h be an arbitrary step size.
- i) Write a user-defined function that can approximate a Hessian matrix of f(x, y) using forward differences. Test your function with $f(x, y) = 2x + 3xy^2 + y^3 + 1$ at a point $(x_1, x_2) = (4, 5)$ with a given step size h = 0.0001.

Note: You can also pass function names as arguments; see the following example.

```
f <- function(x) x^2
g <- function(x, func) func(x)+2
g(3, f)
## [1] 11</pre>
```

j) Consider the following function $f(x, y) = 2x + 3xy^2 + y^3 + 1$. Use the function optimHess in R to approximate the Hessian matrix, i. e. with forward differences at a point $(x_1, x_2) = (4, 5)$ with a given step size h = 0.0001.

Taylor Approximation

- **k)** Define a Taylor series mathematically.
- I) What is a Maclaurin series?
- **m)** What is the Taylor series for e^x with $x_0 = 0$?
- **n)** What is the Taylor series for $\ln 1 x$ with $x_0 = 0$?
- **o)** What is the Taylor series for $\ln 1 + x$ with $x_0 = 0$?
- **p)** What is the Taylor series for $\frac{1}{1-x}$ with $x_0 = 0$?

-1	

q) What is the 2-nd order Taylor approximation of a function $f(x, y) = \ln 1 + x + \ln 1 - y$ around $(x_0, y_0) = (0, 0)$?

Hint: a Taylor Series in 2 variables can be written as

$$f(x,y) = f(x_0, y_0) + \left[(x - x_0) \frac{\partial}{\partial x} + (y - y_0) \frac{\partial}{\partial y} \right] f(x_0, y_0)$$

+
$$\frac{1}{2!} \left[(x - x_0) \frac{\partial}{\partial x} + (y - y_0) \frac{\partial}{\partial y} \right]^2 f(x_0, y_0) + \dots$$

r) What is the 2-nd order Taylor approximation of a function

$$f(x,y) = \sqrt[5]{x^3 + e^y}$$

around $(x_0, y_0) = (0, 0)$?

- **S)** Calculate the Taylor approximation of $f(x) = \sin x$ up to degree 4 around $x_0 = 0$. Then evaluate and compare it for x = 0.1.
- t) Visualize the function $f(x) = \log x + 1$ and its Taylor approximation for $x_0 = 0$.

Optimality Conditions

- **u)** Find the stationary points of the function $f(x, y) = x^3 + 3y y^3 3x$ and analyze their nature using Sylvester's Rule.
- **v)** Consider the function $f(x, y) = \sin x \cdot \cos x$. First of all, plot the function nicely to get an impression of its curvature. Then, consider the points

$$\boldsymbol{p}_1 = \begin{bmatrix} rac{\pi}{2} \\ 0 \end{bmatrix}$$
 and $\boldsymbol{p}_2 = \begin{bmatrix} 0 \\ rac{\pi}{2} \end{bmatrix}$

and check their first and second order optimality conditions using R. What type of stationary points do they belong to?

w) Prove that the function $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$ is convex.

4

2

5	,	

9

2