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1 Introduction

Most economic data is measured over time. The GDP, stock market prices or unemployment

statistics are just a few examples. A tool to understand the processes that generate such data is

time series analysis, which is concerned with analysing the dependencies between the different

observations. It is especially interesting to understand the data generating process to make better

predictions of future values. This is for example important to companies that operate on the

stock market and want to improve their revenues. For this analysis, certain stochastic models

have been developed for discrete data.

This paper aims to introduce to basic stochastic models of time series analysis and applies these

models to data from the West Texas Intermediate crude oil price and intraday data from the

European Energy Exchange Market. Section 2 first takes a look at general properties of time

series. Afterwards models to describe the stochastic process are discussed (section 3). Section 4 is

concerned with typical deterministic components such as trend and seasonality and possibilities

to handle such patterns. Section 5 applies the previously developed tools on the given data with

the help of the statistic software "R".

2 Properties of Time Series Processes

The primary aim of time series analysis is probably forecasting. But to do so, one needs to

identify the stochastic process which underlies the time series. This section will introduce to basic

properties of time series which will be needed later to identify and specify the time series model.

To start with the concept of a time series, consider the following model

xt = st +mt + εt ,

where xt is the current value of the time series. It depends on deterministic components, such

as the seasonal component st and the trend component mt . Furthermore, it also depends on the

stochastic part of the time series εt . Section 2 and section 3 outline possible paths to model this

stochastic part.

2.1 Stationarity

To be able to characterize the stochastic component of a time series, it is necessary to introduce

to the concept of stationarity. Although most economic time series have a trend and are thus not

stationary, they are based on stationary time series or rather can be transformed so that their

residuals are stationary. A time series is considered strictly stationary if the stochastic process

does not change by shifting the time. That is

P{xt1 ≤ c1, . . . ,xtk ≤ ck}= P
{

xt1+h ≤ c1, · · · ,xtk+h ≤ ck
}
,

for all k = 1,2, . . . , all time points t1, t2, . . . , tk, all numbers c1,c2, . . . ,ck, and all time shifts

h = 0,±1,±2, . . . (Shumway and Stoffer 2006, p. 23).
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These are very strict assumptions and they are not practicable for most time series. Hence, this

paper will regard a time series as stationary if it is weakly (or second order) stationary, that is for

all t given by

µ = E(xt), (1)

Var(xt) = E[(xt −E(xt))
2] = σ

2 < ∞, (2)

γτ = E[(xt −µ)(xt−τ −µ)] = E[(xs−µ)(xs−τ −µ)] ∀t 6= s. (3)

Where equation (1) means that the mean value function is constant, equation (2) that the

variance is finite and equation (3) that the different values of the time series are only dependent

on the interval between t and s but not on the actual point in time. The difference between a

random sample and a time series is that the realizations of the time series are not independent

from each other. Thus, to characterize this dependency, one can use the autocovariance and the

autocorrelation. The autocovariance function γτ gives information about the linear dependence

of two different observations of the time series. From γτ , one can derive the more important

autocorrelation function (ACF)

ρτ =
Cov(xt ,xt−τ)

σxt σxt−τ

=
γτ

γ0
∈ [−1,+1],

which also shows this dependency. One can further derive the partial autocorrelation function,

which indicates how much additional explanatory contribution πτ gives when π1 to πτ−1 are also

given

xt = α0 +α1xt−1 +α2xt−2 + . . .+ατxt−τ︸ ︷︷ ︸
πτ

+wt .

2.2 Augmented Dickey-Fuller Test

Judging the stationarity condition by appearance of the time series can be helpful, but it is more

efficient to rely on a statistic test. One important test was introduced by Dickey and Fuller (1979).

In this test, the null hypothesis is the time series has a unit root and the alternative hypothesis is

the time series is stationary. Because the Dickey-Fuller (DF) test relies on the assumption of non

autocorrelated errors, it has been expanded to the augmented Dickey-Fuller (ADF) test, which

includes the lagged changes ∆xt−i into the regression. The idea is to add as many lags k of ∆xt−i

until wt is not autocorrelated anymore. The test then is applied to

∆xt = α +mt +φxt−1 +
k

∑
i=1

δi∆xt−i +wt ,

where α is a constant, mt a trend component and wt a white noise process. The ADF test is

basically the same as the standard DF test for k = 0. As the test statistic is not normally distributed

the test decision is based on the critical values tabulated by Dickey and Fuller. The difficulty

of the ADF test is to decide how many lags one should include into the regression. As the test

statistic will be incorrect for too few lags and loosing power for too many lags (Wooldridge 2013).
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2.3 Non-Stationarity

If the null hypothesis of the ADF test in the previous section cannot be rejected, we have a non

stationary time series. In fact most economic time series are not level stationary because they

have a trend. Hence, it is also important to take a look at non-stationary time series. The simplest

form of a non-stationary process is a random walk

xt = xt−1 +wt ,

where wt (∼ N(0,σ2)) is white noise. This process has a stationary mean E(xt | x0) = x0 but its

variance does not converge and the process is thus not stationary. This non-stationarity can be

solved by calculating first differences

xt − xt−1 = ∆xt = wt .

The resulting time series is now a white noise process and is called integrated of order one I(1).

In general a time series is called integrated of order d, i. e. I(d) for short, if it is stationary (and

thus I(0)), after building the d-th difference.

3 Models for Stationary Time Series

There is a wide range of models that can describe a time series. The basic ones will be considered

here. First the autoregressive model (AR, see section 3.1), second the moving-average model (MA,

see section 3.2) and finally the mixed models (ARMA/ ARIMA, see section 3.3). They all require

the data-generating process to be linear and to have a constant variance (homoscedasticity).

3.1 AR Processes

A very useful model for stationary time series is the autoregressive model, where the stationary

process is described only in terms of its previous values and a white noise term, i. e.

xt = φ1xt−1 +φ2xt−2 + . . .+φpxt−p +wt ,

or in terms of the backward shift operator B by

(1−φ1B−φ2B2− . . .−φpBp)xt = wt ,

φ(B)xt = wt ,

where φτ is the AR parameter which indicates how strongly the past value xt−τ influences the

present value xt and wt represents a white-noise process with expected value E(wt) = 0 and

variance Var(wt) = σ2 (Box, Jenkins, and Reinsel 2008). The white-noise includes everything

unsystematic that is not explained by the past values (e. g. a random shock). The order of the

process is determined by p, because only the p past values influence today’s value. Generally, the

process is called AR(p), if it is of order p.

As the AR process is basically a regression on the processes own past values the parameters can

be estimated with an ordinary least squares estimator. There are two special cases of the AR
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parameter. The first is the case that the process has a unit root, and the second is the case where

φ = 0 and the pure white noise process is left. The latter case can be tested with a Portmanteau-

Test, e. g. the test by Ljung and Box (1978) (the test will be discussed further in section 3.4).

Whether the process has a unit root can be tested with e. g. the augmented Dickey-Fuller test

(see section 2.2). The process has no unit root if all roots φ(B) = 0 lie outside the unit circle and

is then stationary.

The second moments of the process are giving valuable information over the type and order of

the model. For an AR model, the autocorrelation function is infinite and tails off. It is coming

closer to zero after the first p lags, either in smooth exponentials or sine waves. Whereas the

partial autocorrelation function is finite and cuts of at lag p+1, because only the past p values

give information about the process. Hence, taking a closer look at the PACF can help to determine

the order p of the model.

3.2 MA Processes

Another way to describe the stochastic process underlying a time series can be the moving average
process. Here, the current value is described in terms of a weighted average over the q past error

terms, but the weights do not necessarily sum themselves up to one. The model is defined as

xt = wt −θ1wt−1−θ2wt−2− . . .−θqwt−q,

or in terms of the backward shift operator B by

xt = (1−θ1B−θ2B2− . . .−θqBq)wt ,

xt = θ(B)wt ,

where θτ is the MA parameter and wt is Gaussian white noise (Box, Jenkins, and Reinsel 2008).

The order of the process is determined by q, because only the past q error terms are determining

the current value. Generally a process is called MA(q), if it is of order q. Identically to the AR

process, the MA process is only white noise if θτ = 0. The MA parameters can be estimated with

a maximum likelihood estimation. Note that the MA process is always stationary.

Considering the ACF and PACF function, the MA process behaves symmetrically to the AR process.

Here, the ACF cuts off after lag q and the PACF tails off, while coming closer to zero after lag q.

3.3 ARMA and ARIMA Processes

For more complex processes that cannot be described with an AR or MA model, Box and Pierce

(1970) introduced the mixed autoregressive moving average (ARMA) model, where the stationary

process is modeled with an AR part and a MA part. They also expanded the ARMA model to the

autoregressive-integrated moving average (ARIMA) model, in case the time series is not stationary,

but can be transformed into a stationary process through differencing. The general definition is

xt = φ1xt−1 + . . .+φpxt−p +wt +θ1wt−1 + . . .+θqwt−q,
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or as defined by Box and Pierce (1970)

φ(B)∇dxt = θ(B)wt ,

with B as the backward shift operator, such that Bxt = xt−1, φ(B) = 1− φ1B− . . .− φpBp and

θ(B) = 1−θ1B− . . .−θqBq. The ARIMA model is of order (p,d,q), where p indicates the order

of the AR part of the time series and q the order of the MA part. The d indicates the order of

integration, where the time series is integrated of order I(d) if it is a stable and invertible ARMA

process and thus I(0) after differencing d times. As the MA process is always stationary the

ARIMA process is stationary, if its AR part is stationary. For the ARIMA process the ACF and PACF

both tail off in exponentials and/or sine waves.

A summary over the three different ways to model the stochastic component of a time series and

their properties is given in Table 1.
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3.4 Model Selection

After having introduced the different stochastic models, one has to decide which one fits the time

series data. To select the best fitting model two different approaches are considered here. One

is widely known as the Box-Jenkins-Method, while the other is based on different information

criteria. The problem one has to face is to include necessary parameters but not to over-fit the

model, as a complex or overfitted model will deteriorate the quality of forecasts.

Portmanteau Test

The Box-Jenkins approach to checking the fit of the model is to estimate the parameters and

afterwards prove if the residuals are independently and randomly distributed (Makridakis and

Hibon 1997). To test this, Ljung and Box (1978) developed the so-called Portmanteau test

Q = T (T +2)
k

∑
τ=1

r2(τ)

(T − τ)
∼ χ

2,

where T is the number of observations, k is the number of correlation coefficients and r is the

estimated autocorrelation function. The null hypothesis of white noise (Q = 0) can be rejected if

the χ2 test-statistic with k degrees of freedom is higher than the chosen significance level (Enders

2010). If one cannot reject the null hypothesis, then the residuals are white noise and thus only

the purely random component is left of the process. One can use the chosen model for further

evaluations and forecasting. If the null hypothesis can be rejected one should find another model

to describe the process.

Information Criteria

The second method is based on information criteria. They give an answer to the question whether

the chosen model fits the data but they penalize additional parameters so that the most complex

model is not always preferred. Two often used information criteria are the Akaike information

criterion (AIC) and the Bayesian (or Schwartz) information criterion (BIC). It is the aim to

minimize the following equations

AIC =−2lnL+
k
T

= T ln(RSS)+2n,

BIC =−2lnL+
k

lnT
= T ln(RSS)+n lnT,

where L is the value of the maximized log likelihood function, RSS is the residual sum of squares,

k is the number of parameters used in the model and T is the number of observations (Enders

2010). To select the best model one should determine a maximum order and than compare all

possible models with a lower order according to their AIC and BIC. The model with the lowest

AIC and/or BIC should be chosen for further investigation. Generally, the BIC penalizes additional

parameters more severely.
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4 Trend and Seasonality

Recapitulating the definition of a basic time series in section 2, we have introduced methods to

characterize the stochastic part. But most time series do not only consist of a purely stochastic

part but do also have a trend and seasonality component. To model such time series one has to

eliminate the trend and seasonality before fitting any of the models considered in section 3 to the

residuals of the adjusted time series. In this section, a few methods to adjust the time series will

be discussed.

4.1 Trend

Trend is the most common form of non stationarity, especially in economic time series. As

seen in the random walk example, integrating the data can help to make the process stationary.

But differencing is not the right solution to eliminate trend if the trend is not stochastic but

deterministic. Differencing a time series with a deterministic trend component can lead to a

non-invertible MA(1) process and assume correlations where there are none. Thus, if a time

series is stationary around a trend, the proper way to handle the trend problem is to use dynamic

regression to extract the trend component from the stochastic process.

For a time series with a stochastic trend one can use the first or higher differences of the data and

fit an ARIMA model as defined in section 3.3. If the data has a trend it should not be stationary,

so the ADF test should not reject the null hypothesis. But as the ADF test only tests for unit roots

Kwiatkowski et al. (1992) developed the KPSS test to discover a trend component. In this test

the null hypothesis of the data being either stationary around a linear trend or around a level is

tested (Kwiatkowski et al. 1992).

4.2 Seasonality

As most time series data is taken in small intervals over many years it is likely to contain seasonal

factors. Of the various possibilities to handle seasonality two approaches are considered here. The

first uses multiple regression with dummy variables or harmonic functions, the second approach

fits a seasonal ARIMA Model to the data. Although these approaches are now considered

separately it can also be a solution to combine them.

Regression

If the seasonal effects in the time series are constant and additive they can be extracted using a

regression model with dummy variables for each season. For a time series that contains monthly

seasonality (s1, . . . ,s12) the regression could be considered as

xt = β1s1 +β2s2 + . . .+β12s12 + εt ,

where the time series consists of the additive seasonal components st , a stochastic noise term

εt , that may be autocorrelated, and the regressors β1, . . . ,β12. If the seasonality is assumed to be

multiplicative it can be useful to take the logarithm of the data to achieve additive components.
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Some seasonal effects are better considered not as linear parameters but as smoothly varying

over time or seasons. Therefore sine and cosine functions can be estimated to build a model with

smooth seasonality. Cowpertwait and Metcalfe (2009) define a harmonic model as

xt = mt +
[s/2]

∑
i=1

[
si sin(2πi

t
s
)+ ci cos(2πi

t
s
)
]
+ εt ,

where s are the number of seasons, [s/2] are the possible cycles, i the frequency and si and ci are

unknown parameters.

Seasonal ARIMA Model (SARIMA)

If one considers the seasonality in the time series to be stochastic, one can fit an ARIMA model

with an extra multiplicative seasonal component. Box, Jenkins, and Reinsel (2008) divide the

multiplicative model into "between periods"

ΦP(Bs)∇s
Dxt = ΘQ(Bs)wt ,

and "within periods"
φp(B)∇dxt = θq(B)wt .

The general multiplicative case for a SARIMA(p,d,q)× (P,D,Q)s model is then defined as

φp(B)ΦP(Bs)∇d
∇s

Dxt = θq(B)ΘQ(Bs)wt ,

where Φ and Θ are the AR and MA coefficient of the seasonal pattern, respectively. And Bs

is the seasonal back shift operator. The order of the ARIMA-part is p,d,q, and the order of

the seasonal pattern is P,D,Q. The seasonal period is denoted by s. The variable D refers to

the seasonal difference, e. g. if the time series consists of monthly data over several years, the

seasonal difference would be ∆st = st − st−12 (Box, Jenkins, and Reinsel 2008). The model can

only be fit to the data if the process is stationary or stationarity in both parts can be achieved

through differencing. That means one has to check for unit roots in the "within" part and also for

seasonal unit roots in the "between" part.

5 Analysing Time Series in R

The previous chapters have shown the mathematical backgrounds. The remainder of the paper

will test these concepts first on the West Texas Intermediate (WTI) crude oil price and, afterwards,

on electricity prices from intraday data of the European Energy Exchange (EEX) market. This

analysis will be done using the statistic software "R". The commands in the program are written

as command. Most functions used are from the package "stats" developed by the R Core Team

(2013).
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Figure 1: The WTI crude oil price plot in business days per week and corresponding ACF
in period 2002-2011.

5.1 WTI Crude Oil Price

The WTI Oil Price is given from Dec 31, 2002 until Feb 01, 2011, for all five business days per

week. In "R", one can create a time series object with the function ts. A first look at the plot of

the time series in Figure 1a gives valuable information concerning trending behaviour. In this

case the graph plotted with plot . ts shows a possible upward trend. The autocorrelation function,

which plots the sample correlation against the lags (acf( oilts , lag.max = 100)), Figure 1b shows

a slow decay, which also indicates non-stationarity. Finally, the ADF test (section 2.2) cannot

reject the null hypothesis of a unit root with a p-value of 0.5587 and the KPSS test rejects the null

hypothesis of trend stationarity on a significance level lower than 1%. The last two tests are part

of the "R"-package tseries (see Trapletti and Hornik 2013)

1 adf . t e s t ( o i l t s )
2 kpss . t e s t ( o i l t s , nu l l=" Trend " )

Considering the previous stationarity tests, it seems appropriate to take a look at the first

difference of the oil price data in Figure 2a. The corresponding function is diff ( oilts ). If the

process would follow a random walk, the resulting sample autocorrelation function of the

differentiated data should not be autocorrelated anymore. Figure 2b shows that this is almost the

case. But other models might be more accurate to describe the process. Table 2a shows selected

models for the differentiated I(1) oil price data. If one takes a look at the information criteria

and the Ljung-Box p-value (as discussed in section 3.4), the AIC is lowest for the AR(5) process,

the BIC is lowest for the MA(1) process and the Ljung-Box p-value is highest again for the AR(5)

process.

In "R" the corresponding function to fit an AR model is ar(x, method=c("yw", "mle", "ols", "burg",

order.max). One can chose between different methods of parameter estimation (Yule-Walker,

maximum-likelihood estimation, ordinary-least-squares or burg-algorithm) and determine the

maximum order of the model, if no maximum order is selected the function chooses the order

according to the AIC. The output is then the selected process of order p and the estimated AR

parameters.
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(b) ACF of the differentiated oil price across lags
with a 95 % confidence interval (blue dotted line).

Figure 2: Differentiated crude oil price time series plot and corresponding ACF.

Model AIC BIC Ljung-Box

Random Walk 8111.71 8123.02 0.0136

AR(1) 8105.62 8116.93 0.9092

AR(5) 8089.96 8123.89 0.9746

MA(1) 8105.09 8116.39 0.9256

MA(5) 8090.16 8124.09 0.9575

ARMA(1,1) 8106.29 8123.25 0.8929

ARMA(2,2) 8093.93 8122.20 0.4896

(a) Different models for the differentiated oil
price.

Orig. Data Random Walk AR(5) MA(1)

1 71.93 74.69 74.841 74.711

2 73.97 74.69 74.943 74.711

3 74.99 74.69 74.885 74.711

4 74.52 74.69 74.748 74.711

5 74.52 74.69 74.802 74.711

(b) Comparison of the original data of the first
days of the test set to the forecast of the best
fitted models of the training set.

Table 2: Results to the analysis of the oil price data.

1 ar ( x = d i f f ( o i l t s ) , method = " mle " )
2

3 C o e f f i c i e n t s :
4 1 2 3 4 5
5 0.9526 0.0085 0.0824 −0.0094 −0.0361
6

7 Order s e l e c t e d 5 sigma 2̂ es t imated as 2.707

The command SelectModel(x, ARModel = "AR", Criterion=c("AIC", "BIC"), Best=x), where the best x models

are shown, that have been chosen either according to the AIC or BIC (McLeod and Zhang 2008),

is also helpful. To fit more complex models to the data the function arima(x, order=c(p,d,q)) can

be used. The output also includes the AIC and BIC of the model. One can also find a built-in

function to select the order of an ARIMA model automatically auto.arima(x, stationary = TRUE,FALSE,

ic="bic","aic", stepwise=TRUE, trace=FALSE, test="adf") (see Stoffer 2012). Table 2a has been created

by using the arima function, fitting all possible models and afterwards compare their AIC and BIC.

To choose the best model one might also consider how much of the original time series the

different fitted models can actually explain . In Figure 3 the AR(5) and MA(1) fitted values are

plotted in comparison to the original differentiated data. As can be seen here, neither model can

take the high volatility of the oil price into account. The prediction is therefore not as accurate as
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Figure 3: Fitted models of MA(1) (left) and AR(5) (right) in comparison to the original
differentiated crude oil price (grey).

one might hope. In Table 2b, the forecasting performance for the three best models, the random

walk (RW), AR(5) and MA(1), are summarized. For that a subset of the original data was used

as "training" set. The three models were then fitted to the training data and used to forecast

the next five oil prices. The first column of the table shows the values of the original data, the

following columns show the predicted values from the different models. In "R", the forecasting

can be done with the function forecast if the object one wants to forecast is of the class arima. This

function is included in the "forecast"-package by Hyndman (2013). One can also use predict from

the "stats"-package, which can also forecast other objects.

One can see that all three models perform rather poorly. As the AR(5) and MA(1) model fail

to include the high volatility one could consider the random walk as most fitting for the data.

The random walk hypothesis is also supported widely for stock market prices (see also Fama

1970, Lee 1992). Although the residuals of the differentiated oil price process are not normally

distributed, it seems appropriate to take the random walk into account and calculate a high signal

in noise that cannot be evaluated with a classical AR model.

5.2 EEX Intraday Data

The intraday Data from the European Energy Exchange (EEX) is given as hourly weighted average

from Jan 01, 2009 01:00am to June 26, 2012 11:00pm. The plot of the time series Figure 4a

shows that the process seems to be stationary. The ADF test confirms this by rejecting the null

hypothesis of a unit root with a p-value smaller than one percent. The KPSS test also rejects the

null hypothesis of trend stationarity on a 1% significance level. Differencing the data should,

thus, not be needed. Looking at the ACF function of the process, it becomes clear that the process

has various seasonal patterns (Figure 4b).

In section 4, a few methods to eliminate the seasonality have been shown. In this example, it

seems most appropriate to fit a harmonic model as in section 4.2 to the time series. Cowpertwait

and Metcalfe (2009, p. 101 ff) describe a way to define possible sine and cosine functions in "R"

via matrices. For the EEX Data a weekly cycle seems to be fitting. Because the data is given

hourly, one season is here 168 hours and thus a cycle is 168/2 = 84 hours. This is implemented in

"R" as follows
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(b) ACF of the EEX intraday price across lags with a
95 % confidence interval (blue dotted line).

Figure 4: EEX intraday data from 2009 to 2012 in hours and corresponding ACF.

1 SIN <− COS <− matrix ( nr=length ( time ( WeighAvPrice ) ) , nc=84)
2 f o r ( i in 1:84) {
3 COS[ , i ] <− cos (2* p i * i * time ( WeighAvPrice ) /168)
4 SIN [ , i ] <− s i n (2* p i * i * time ( WeighAvPrice ) /168)
5 }

Now, one can regress the different harmonics on the weighted average price of the data. This was

done with all 84 sine and cosine functions to find out which harmonics are significant. Afterwards

all insignificant harmonics with a t-statistic less than a critical value of 1,96 were taken out, so

that 17 harmonics were left. With the help of the AIC criterion various regression models have

been checked including different dummy variables and different harmonics. The code below

shows the best regression model that was used for further investigation.

1 season <− lm( WeighAvPrice ~ 0 + time ( WeighAvPrice ) + I ( time ( WeighAvPrice )^2)
2 + I ( time ( WeighAvPrice )^3) + I ( time ( WeighAvPrice )^4)
3 + COS1[ ,1] + COS1[ ,2] + SIN1 [ ,1] + SIN1 [ ,2]
4 + COS[ ,1] + COS[ ,2] + COS[ ,3] + COS[ ,4] + COS[ ,5]
5 + COS[ ,6] + COS[ ,9] + COS[ ,10]
6 + SIN [ ,1] + SIN [ ,2] + SIN [ ,3] + SIN [ ,4] + SIN [ ,6]
7 + SIN [ ,8] + SIN [ ,9] + SIN [ ,15] + SIN [ ,16]
8 + Hour + Season + Year + Date )

The constant 0 has been included, so that no dummy category is omitted, and the trend component

is fitted as a polynomial of order four. The four last regressors are dummy variables for hour,

season, year and date respectively. The SIN and COS functions are harmonics for the weekly

cycles, whereas SIN1 and COS1 are harmonics for the daily cycles. The residuals of this regression

should now include only the stochastic components of the data.

Looking at the ACF and PACF of the deseasonalized data, one can still find reoccurring peaks.

This is a sign for an additional stochastic seasonal component, which can be characterized by a

SARIMA model (section 4.2). In Table 3 several models are summarized according to their AIC,

BIC and Ljung-Box test p-value. The best model to describe the intraday data seems to be the

seasonal ARMA(12,0)(1,0,1)24 model. It has the lowest AIC, BIC and the highest p-value and the

residuals of the model show hardly any autocorrelation. The fitted model of the seasonal AR
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Model AIC BIC Ljung-Box

AR(13) 201994 202119 0.8715

AR(14) 201974 202108 0.9695

ARMA(2,3) 202008 202058 0.9632

ARMA(4,1) 202013 202063 0.9931

ARMA(12,0)(1,0,1)24 199560 199686 0.9957

ARMA(14,0)(1,0,0)24 204733 204866 0.9722

ARMA(14,0)(1,0,1)24 200325 200467 0.9957

ARMA(13,0)(1,0,1)24 200354 200487 0.8778

ARMA(8,1)(1,0,1)24 200381 200481 0.9966

Table 3: Comparison of selected models for the deseasonalized EEX intraday price.
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Figure 5: Fitted values of the seasonal AR process and the deterministic seasonality (blue)
in comparison to the original intraday price (red) for the first months in 2009.

process plus the deterministic seasonality is plotted in Figure 5. To predict the data, one would

now need to add the deterministic seasonal and trend components to the stochastic forecast.

6 Conclusion

The analysis of the crude oil price has shown that a part of the stochastic process can be described

in terms of an appropriate AR model. But the chosen models cannot really account for the high

volatility of the stock price. Here, one might consider other approaches to model the time series to

improve the forecasts. One could for example relax the assumptions taken e. g. heteroscedasticity.

As for the EEX intraday data, the resulting model can characterize the stochastic and deterministic

process quite well. It has been shown that even more complex data, with different seasonal

patterns can be adjusted so that one can fit one of the basic stochastic models. Putting it all

in a nutshell, the classic time series models can help to understand and classify the stochastic

process underlying discrete time series data. Even those rather simple models can describe the

data fittingly, but the prediction quality leaves room for further improvement. In "R", a huge

variety of different packages and functions is included to simplify the analysis.
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