

Business Analytics

– SEMINAR SUMMER SEMESTER 2014 –

An Introduction to Optimization with the Statistical

Software “R”

– SEMINAR PAPER –

Submitted by: Fabian Sprengholz

Advisor: Prof. Dr. Dirk Neumann

Optimization with the Statistical Software „R“

2 / 20

Table of contents

1. Introduction ... 3

2. Classification of optimization problems .. 4

3. Basics of optimization with “R” .. 6

3.1 Levels of using “R” ... 7

3.2 Basic argument structure of a solver in “R” .. 8

4. Linear programming with lp() and solveLP() .. 9

5. Quadratic programming with solve.QP().. 12

6. Non-linear programming with optimize() and optimx() ... 14

6.1 One dimensional non-linear programming with optimize() ... 14

6.2 Multidimensional non-linear programming... 15

6.2.1 Basic solving algorithms ... 15

6.2.2 optimx() – solving non-linear optimization problems with “R” 17

7. Conclusion ... 19

8. References ... 20

Optimization with the Statistical Software „R“

3 / 20

1. Introduction

Optimization is omnipresent. Although most people relate it intuitively to economic questions, it

also appears in a lot of other contexts such as, for example, engineering, sports and science. And

even if we do not call them this way, we are constantly solving optimization problems in our

daily lives. We do so when making a plan for the next day or searching the fastest way through

the city to get back to our car. Optimization simply means the search for the best solution of a

problem. And a problem can be defined as a discrepancy between the actual state and the state

we wish to have (e.g. Glass 2014). Such problems in real life are normally very complex and not

easy to overview. With the help of mathematics, we can create formal models of those real life

problems, which naturally are highly abstract and simplified. However, this reduction enables us

to clearly define the goal of the optimization, the wished state, and the frame conditions of the

optimization. Indeed the model helps us to overview the problem and to find the best solution.

In this paper, we do not discuss the modeling of optimization problems but focus on how to

solve them. Although we can solve small optimization problems by hand, it becomes hard, even

impossible, with big and complex problems. This paper aims to give an introduction to optimiza-

tion with the statistical software “R” and wants to show how “R” helps to solve even complex

problems in an easy manner.

The paper consists of three main parts. The first part is dedicated to the general structure of

optimization problems and the description of characteristics allowing us to build up classes of

optimization problems (see Section 2). Section 3 gives a survey of how “R” can be used for opti-

mization and introduces the basic argument structure of a solver-function. The last part (Sec-

tions 4-6) describes basic optimization problems of linear, quadratic and non-linear program-

ming as well as the appropriate solver functions in “R”.

“R” commands, which can be directly implemented to “R”, are marked in red and output is indi-

cated in blue.

Optimization with the Statistical Software „R“

4 / 20

2. Classification of optimization problems

Optimization problems can appear in very different forms and thus require different solution

approaches. It makes sense to create classes of optimization problems and develop class-specific

solution methods which are appropriate for the solution of all problems in one class. There is no

universally accepted classification, but Figure 1 shows a possible way of structuring the main

distinctive features of optimization problems (e.g. Sauer 2003) that will be discussed in the fol-

lowing.

Type of the objective and direction of optimization

Objectives generally can be divided into two types: linear objectives and non-linear objectives. A

third common type is the quadratic objective, a special case of the non-linear objective. If is the

vector of the variable x , is a numeric vector and

 , then is a linear objective.

When is a symmetric matrix and

then is a quadratic objective. In all other cases is a non-linear objective. The denomi-

nation ‘ill-behaved’ or ‘badly behaved’ objective can be also found but has no clear definition.

Often it means objectives, which can not be analyzed with the methods of analysis (Zoonekynd

2012).

The objective shapes the decision problem of the optimization. It defines the relation between

the decision parameters, the parameters that can be varied during the search for the best solu-

Figure 1: Diagram showing a possible structure of classification characteristics for OPs.

Classification characteristics of OPs

Type of the

objective

Parameter
space (Type of
the variables)

Type of the

constraints

Dimension

Optima

▪ linear

▪ nonlinear

▪ quadratic

▪ ill-behaved

▪ continuous

▪ discrete

▪ linear

▪ nonlinear

▪ quadratic

▪ box

▪ one

▪ multi

▪ local

▪ global

Direction of

optimization

▪ minimization

▪ maximization

Optimization with the Statistical Software „R“

5 / 20

tion, and the result of the decision. For example, an enterprise has to decide which goods to pro-

duce (decision parameters) for maximizing profit (result).

Mathematically, the optimization problem can be described as the search for an extremum of the

objective (Sauer 2003), i.e. This search, for an objective , can be described, for example, by the

following Equation (1) where is the feasible region and the search space.

(1)

The direction of the optimization, the search for a maximum or minimum, is not relevant for the

solution as the minimum of F is the maximum of –F, which is shown by Equation (2).

 (2)

The solution of an optimization problem is a vector that contains a value for each decision

parameter.

Constraints and the feasible region

The feasible region of an optimization problem can be limited by constraints. Thus, first distinc-

tion is made between constrained and unconstrained optimization problems. Within the con-

strained problems, further distinction can be made depending on the sort of constraints. There

are linear, quadratic, non-linear, integer and box constraints to be found.

The constraints of an optimization problem define which values the decision parameters may

adopt and thus determine the feasible region and the possible solutions of the problem. The fea-

sible region is a subspace of the search space. If the search space D contains all ℝ, the con-

straints define a subspace D’ of the element D and the parameters are now allowed to take only

values x ∈ D’. When an enterprise thinks about the goods to produce, it has to take into account

their restricted resources, their budget, the capacity of the machines etc.

The constraints in a model can take the form of equalities or inequalities as it is shown by Equa-

tion (3).

(3)

Optimization with the Statistical Software „R“

6 / 20

Constraints can complicate the search for solutions. So it can be appropriate to transform or

dissolve constraints to simplify the problem. The inequality sign can be reversed by a multiplica-

tion with – on both sides. The introduction of slack variables can transform inequalities into

equalities. And sometimes constraints can be dissolved by reparametrization, where one varia-

ble is replaced by an unknown function. For example, the constraint can be replaced by

 (Zoonekynd 2012).

The parameter space

The parameter space contains all possible values for the parameters of a problem. One can dis-

tinguish between continuous and discrete optimization problems. In a continuous problem the

variables are allowed to take any value permitted by the constraints. Thus, it can take arbitrary

real numbers as values, and methods of analysis can often solve the problem. In a discrete prob-

lem this is not the case, the parameters can take only discrete values (Gould 2006).

Dimension

The dimension of an optimization problem depends on the amount of decision variables in the

objective and the constraints (e.g. Glass 2014). It is a measure of the complexity of the problem.

If there is only one variable, it is a matter of a one-dimensional optimization problem. If there

are more variables, it is called multidimensional optimization.

Local and global optima

There are two types of optima, which can be distinguished: local and global optima. A local opti-

mum exists in x* when there is an interval around x* so that or

for all in . When has the smallest or biggest function value in the whole feasi-

ble region and not only in a certain interval, it is called a global optimum.

Depending on the context of the search, it has to be decided whether to search a global or local

solution. Here, the concept of convexity becomes relevant for optimization: If we are dealing

with convex optimization problems, having a convex objective, such as linear and quadratic ob-

jectives, a local optimum is always a global optimum, too.

3. Basics of optimization with “R”

Simple optimization problems can be solved by hand. However, with increasing complexity, re-

sulting from a big amount of variables and constraints, this becomes a hard and time consuming

task. The statistical software “R” is a free and powerful tool that is easy to manage and helps to

solve even complex optimization problems.

Optimization with the Statistical Software „R“

7 / 20

3.1 Levels of using “R”

Basically, “R” offers three different levels for solving optimization problems, which are repre-

sented in Figure 2. Firstly, a problem-solving algorithm can be implemented manually, defining

each step of the algorithm and writing the commands to the command line. This needs a deep

understanding of the mathematical background of the problem and of the solving method as

well as the skill to transfer this knowledge into adequate commands.

The second way is much easier since it accesses work done by people who wrote scripts for

most of current solving algorithms and provide these to the public as built-in functions in “R”

packages. The CRAN Task View: optimization and mathematical programming (Theußl 2014)

gives an overview of the multitude of packages available for optimization. For solving a problem

with an in-built function, only the knowledge of the right solver function and its argument struc-

ture is needed.

The different solvers quite often vary in their argument structure. Because of that, the “R” Opti-

mization Infrastructure (ROI), a framework “that promotes the development and use of interop-

erable (open source) optimization problem solvers for R” (Theußl 2011) was developed. The

idea is to uniform the structure of optimization problems by defining them as objects and mak-

ing them accessible for different solvers. This makes it easier for users because they do not need

to know the solver-specific argument structure of every single solver but only the argument

structure of the ROI framework.

In this work we concentrate on the in-built function level.

ROI-Framework

Solver as in-built function

Manually imple-

mented solver

Figure 2: Levels of using “R” to solve optimization problems.

Optimization with the Statistical Software „R“

8 / 20

3.2 Basic argument structure of a solver in “R”

According to the features of an optimization problem described in Section 2, the basic argument

structure of a solver function in “R” is as follows (Theußl 2011):

function(objective,constraints,bounds=NULL,types=NULL,maximum=FALSE)

The objective and the constraints have to be specified for every solver, other arguments often

have default values.

 The objective has to be described depending on its type. So, for example, the coefficient c

of a linear objective has to be a numeric vector. A quadratic objective has to be described

with a symmetric matrix A and a numeric vector c for the linear part. The non-linear ob-

jective can be an arbitrary function (compare to examples in Sections 4-6).

 The constraints normally are divided into three arguments: one for the left-hand side

(lhs), one for the right-hand side (rhs) and one for the direction of the constraints

(dir). Usually, lhs is a numeric matrix and rhs is a numeric vector. The argument dir

can be a vector of the character strings of (in)equalities signs such as “==”, “>=”, ”<=”, ”<”,

”>”. There are also other ways to indicate the direction of the constraints (see Section 5).

 If bounds (box constraints) have to be specified, this is often done with two arguments

containing a numeric vector: one for the lower bound (lower), the other for the upper

bound (upper). For example, the box constraint where

 are numeric vectors. Here and would be the

arguments that specify the constraint (e.g. National Computational Infrastructure 2014).

 The parameters can take values of different types such as continuous, integer, binary or

mixed. The default type normally is continuous. When functions can treat parameters of

different types, the type has to be specified in an argument. This has to be done in very

different ways depending on the function. Sometimes, there are arguments of the sort

all.int TRUE, which define the type of all parameters. In other functions, the type

of every single parameter can be specified in a vector. One possibility could be an argu-

ment such as type c where c is, for example, the vector

 that indicates that the first

and the fourth parameter are of the type integer.

 The usual default direction of optimization in “R” is minimization. However, some func-

tions have an argument where the direction can be specified. One example for such an

argument could be maximum TRUE, in this manner maximization is here defined as di-

Optimization with the Statistical Software „R“

9 / 20

rection. Often, there is no specification of the direction because it is not relevant for the

solution of an optimization problem (see Section 2).

In this section, a “R”-solver was described in a general, abstract way. The following three sec-

tions give an introduction to common optimization problems and show how to solve them in “R”

with the help of specific in-built functions.

4. Linear programming with lp() and solveLP()

If the objective function and the constraints of an optimization problem are both linear, we call

the problem linear programming. The standard form for a minimization problem (see

Equation (4)) is given by Braun, Murdoch (2007).

 (4)

If the variables can adopt only integer values, solving gets harder. This kind of problem often

appears in production or traffic planning.

The most popular algorithm for solving such a problem is the simplex algorithm. It utilizes the

knowledge that the optimal solution lies at a vertex of the feasible region, which is constricted by

the linear constraints. The optimum has to be at an intersection of constraint boundaries (basic

solution) and has to lie in the feasible region. The idea now is to compare the vertices of the

basic solutions not randomly, but by searching from a starting-point always the adjacent vertex

being closest to the optimum. In this manner the algorithm finds the shortest way from the start-

ing point to the optimal solution. For a detailed description of the simplex method see Sauer

(2003) and Nagesh Kumar (2014).

Example of programming – A farmer

A farmer has three kinds of animals: cows, sheep and pigs. To raise these animals, different re-

sources are required. And with every animal a different profit is realized. Table 1 shows all con-

sidered parameters.

 Cow Sheep Pig Capacity

Units of land 2 0.5 0.3 100

Units of additional food 1.3 0.8 1 200

Hours of work 120 30 60 5000

Hours of machine time 7 10 11 1100

Profit in $ 200 100 120

Table 1: Parameters for the optimization problem of the farmer.

Optimization with the Statistical Software „R“

10 / 20

How many animals of every kind should the farmer raise to maximize the profit?

The “R” packages lpSolve (Berkelaar et al. 2014) and linprog (Henningsen 2012) provide

the built-in functions lp()and solveLP(), which are based on the simplex algorithm and

help to solve the problem. The main arguments of these functions are:

 objective.in: the coefficient vector of the objective.

 const.mat: matrix of the coefficients in the left-hand side of the constraints; one row

per constraint and one column per variable.

 const.dir: vector of character strings such as "<=", "==", ">=" that indicate the direc-

tion of the constraints.

 const.rhs: a numeric vector that contains the right-hand side values of the con-

straints.

 direction: defines the direction of the optimization „min“(default) or “max”.

The function lp() accepts only positive values for the variables: .

The main task is to set up the problem and bring it into the required form so that the functions

can solve it. The maximization problem of the farmer is formulated by Equation (5) where

 .

 (5)

In Box 1 this problem is implemented and solved with the function lpSolve. In Box 2 the
same is done with solveLP.

> library(lpSolve)

> objective.in <- c(200,100,120)

> const.mat <- matrix(nrow=4, ncol=3, c(2,0.5,0.3,1.3,0.8,1,120,30,60,7,10,11), byrow = TRUE)

> const.dir <- c("<=","<=","<=","<=")

> const.rhs <- c(100,200,5000,1100)

> lp <- lp(direction="max",objective.in,const.mat,const.dir,const.rhs)

> lp

Success: the objective function is 13232.32

> lp$solution

[1] 17.17172 97.97980 0.00000

 Box 1: “R” code snippet for solving the problem “A farmer” with lp().

Optimization with the Statistical Software „R“

11 / 20

>library(linprog)

>

>solveLP(objective.in,const.rhs,const.mat, maximum=TRUE,const.dir)

Objective function (Maximum): 13232.3

Iterations in phase 1: 0

Iterations in phase 2: 2

Solution

 opt

1 17.1717

2 97.9798

3 0.0000

Basic Variables

 opt

1 17.1717

2 97.9798

S 1 16.6667

S 2 99.2929

Constraints

 actual dir bvec free dual dual.reg

1 83.3333 <= 100 16.6667 0.00000 16.6667

2 100.7071 <= 200 99.2929 0.00000 99.2929

3 5000.0000 <= 5000 0.0000 1.31313 1700.0000

4 1100.0000 <= 1100 0.0000 6.06061 808.3333

All Variables (including slack variables)

 opt cvec min.c max.c marg marg.reg

1 17.1717 200 106.667 400.00000 NA NA

2 97.9798 100 72.000 285.71429 NA NA

3 0.0000 120 -Inf 145.45455 -25.45455 62.963

S 1 16.6667 0 NA 36.36364 0.00000 NA

S 2 99.2929 0 NA 105.26316 0.00000 NA

S 3 0.0000 0 -Inf 1.31313 -1.31313 1700.000

S 4 0.0000 0 -Inf 6.06061 -6.06061 808.333

The function lp() shows the value of the maximized objective and, with the command

lp$solution, the optimal levels of the variables. The farmer should keep 17.17 cows, 97.98

sheep and no pigs and his maximized profit would be 13232.32 $.

The function solveLP() from the package linprog has a more detailed output printing the

whole final simplex table. It needs the same arguments as lp()but in a different order. Here, the

values of all variables are printed and it becomes visible that 16.67 units of land and 99.29 units

of additional food will be left and can be used in another way.

Despite its less detailed output, lp() often is a better choice because solveLP() is slow and

can not handle integer programming (Braun 2013). It is evident that there is no fraction of a

living animal, so that it is appropriate to define the variables to be of the type integer.

With lp() this is very easy, only one more argument is needed, which is demonstrated in Box 3.

It results that keeping 17 cows and 98 sheep is the solution for the farmer’s optimization prob-

lem.

> lp<- lp(direction="max",objective.in,const.mat,const.dir,const.rhs)

> int.vec<- c(1,2,3) #vector that gives the indices of the variables, which have to be integer

> lp<- lp(direction="max",objective.in,const.mat,const.dir,const.rhs, int.vec=int.vec)

> lp

Success: the objective function is 13200

>lp$solution

[1] 17 98 0

Box 2: “R” code snippet for solving the problem “A farmer” with solveLP().

Box 3: “R” code snippet for solving the problem “A farmer” as integer programming with lp().

Optimization with the Statistical Software „R“

12 / 20

5. Quadratic programming with solve.QP()

If the objective function of an optimization problem is quadratic and the constraints are linear, it

is called quadratic programming. A basic form is:

 with being

the vector of decision variables, a symmetric matrix, a numeric vector of length

and being a matrix where is the number of constraints.

For solving such problems with “R”, the quadprog package (Turlach, Weingessel 2013) pro-

vides the function solve.QP(), which takes the following main arguments:

 Dmat: Matrix of the quadratic objective ().

 dvec: Coefficient vector of the objective ().

 Amat: Matrix defining the constraints ().

 bvec: Vector containing the right-hand side values of the constraints ().

 meq: a number , which indicates that the first m constraints will be treated as equality

constraints and all further constraints as inequality constraints.

Using solve.QP, one has to take into account that inequality constraints must be of the type

“ . Inequalities of the form ” ” have to be transformed by multiplication with . Further-

more, the non-negativity constraints have to be indicated explicitly and the direction of the op-

timization is always minimization.

Example of quadratic optimization – Portfolio Selection

The following example is taken from Braun and Murdoch (2007). A stock investor wants to in-

vest his fortune so that it maximizes his benefit . The benefit depends on the expected daily

return (and the risk () of the portfolio so that the optimization problem can be described as

 . The risk attitude of the investor is (means indifference towards

risk). In this example, the investor has a risk tolerance of . The three stocks with the follow-

ing parameters in Figure 3 are available. These values are usually won from historical data.

Expected
daily return

s1 s2 s3

 0.002 0.005 0.01

Covariances s1 s2 s3

s1 0.01 0.002 0.002

s2 0.002 0.01 0.002

s3 0.002 0.002 0.01

Figure 3: Parameters of the example “Portfolio Selection”.

The question for the investor is now how to weigh the different stocks in the optimal portfolio.

The problem expressed in the needed matrix notation is

Optimization with the Statistical Software „R“

13 / 20

 with and

 .

The expected daily return of the three stocks is represented by the vector , and is the covari-

ance matrix that gives the variances and the covariance of the stocks. The variable is the deci-

sion variable that describes how the fortune is divided between the stocks. It follows that:

 is the expected daily return of the portfolio



 is the risk attitude


 is the expected variance of the portfolio

The constraints are
 . They indicate that the sum of the frac-

tions of the fortune should be 1. Moreover, no fraction can be negative. This means that short

selling is excluded. The constraints in matrix notation are

 .

Given the needed form, it is easy to solve the problem with the function solve.QP (see Box 4).

> library(quadprog)

> Q<- matrix (c(0.01,0.002,0.002,0.002,0.01,0.002,0.002,0.002,0.01), nrow=3) #Dmat

> A<- t(matrix(c(1,1,0,0,1,0,1,0,1,0,0,1),nrow=4)) #Amat transposed

> c<- c(0.002,0.005,0.01) #dvec

> b<- c(1,0,0,0) #bvec

> solve.QP(2*Q,c,AA,b,meq =1) #meq=1 because the first constraint is an equality

$solution

[1] 0.1041667 0.2916667 0.6041667

$value

[1] -0.002020833

$unconstrained.solution

[1] -0.02678571 0.16071429 0.47321429

$iterations

[1] 2 0

$Lagrangian

[1] 0.003666667 0.000000000 0.000000000 0.000000000

$iact

[1] 1

The output shows that the investor should invest 10.42% of his fortune in stock 1, 29.16 % in

stock 2 and 60.42% in stock 3. The optimal value of the objective, the benefit, is 0.002020833. It

appears as a negative value because the function always does minimizations. In the output,

$iact indicates that the constraints are activated. If this is not the case, constrained opti-

mization equals unconstrained optimization.

If we need to solve a quadratic objective subjected to quadratic constraints the package Rcplex

(Bravo 2013) provides a possible solution.

Box 4: “R” code snippet for solving the problem “Portfolio Selection” with solve.QP().

Optimization with the Statistical Software „R“

14 / 20

6. Non-linear programming with optimize() and optimx()

All optimization problems with nor linear neither quadratic objective are called nonlinear. The

methods to solve them can be divided into groups. Some methods use derivations, if the problem

allows it, while others are derivative-free. Furthermore, one-dimensional and multidimensional

methods exist.

The following methods are helpful for unconstrained optimization problems. If there are con-

straints, a new objective has to be constructed with the constraints being integrated (e.g. La-

grange method) so that still the methods of unconstrained optimization can be applied.

6.1 One dimensional non-linear programming with optimize()

One method for solving one-dimensional optimization problems without knowing their deriva-

tions is the “golden section search”. With this method, problems that have a single optimum in a

specified interval can be solved. The algorithm starts with an interval containing the opti-

mum. Afterwards, it narrows the interval by comparing function values until a predefined size is

reached. Due to the direction being minimization, it is obvious that if , the mini-

mum has to be left of and the new search interval is . Otherwise, it would be .

Within the new interval, the last step is repeated until the demanded interval size is attained.

For a detailed explanation and a more efficient version with a constant reduction factor see

Verschelde (2005).

The function optimize()from the package stats (R Core Team 2014) provides an imple-

mented variation of the golden section search. It can be used to solve the following problem

 . (6)

The function is not differentiable for and , which can be seen in the plot that is

shown in Figure 4.

Figure 4: Finding a minimum of a one-dimensional function which is not differentiable.

Optimization with the Statistical Software „R“

15 / 20

The function optimize() needs the following four arguments:

 f: the objective

 lower : the minimum of the interval

 upper: the maximum of the interval

 tol : the tolerance, which defines the size of the final interval(there is an default value)

> f <- function(x) return(abs(x- 2)+ 2* abs(x-1))

>optimize(n.deriv.f, lower= 0, upper=3)

$minimum

[1] 1.000009

$objective

[1] 1.000009

In Box 5 optimize() was applied on the problem in Equation (6). The output shows 1.000009

as solution for the minimized -value and the objective value. It seems to be a good approxima-

tion for the exact solution, which is 1.

6.2 Multidimensional non-linear programming

For the multidimensional, non-linear programming there are plenty of solving algorithms. In this

section, three basic main methods as well as the “R”-function optimx() using solvers of all

three methods will be shortly presented.

6.2.1 Basic solving algorithms

The solving algorithms, whose basic ideas will be presented in the following, are: the Nelder-

Mead simplex method as a common non-derivative method, the steepest descent method as

primary gradient method and the Newton-Raphson method as base for the hessian methods.

Non-derivative method – Nelder-Mead simplex algorithm

The Nelder-Mead simplex is a derivative-free method for solving non-linear optimization prob-

lems with dimensions greater than 1. For a more detailed introduction see Geiger, Kanzow

(1999) and Braun, Murdoch (2007). Basically, three steps are taken:

1. points are chosen with being the number of variables. The points are

arranged that they build an -dimensional simplex with vertices.

2. The values of are calculated and arranged in order according to its size

 .

3. If the best value – for minimization the smallest – is good enough, the algorithm stops. If this

is not the case, the worst value – for minimization the highest – is replaced and the algo-

rithm continues with step 2.

Box 5: “R” code that applies the function optimize() to the problem in Equation(6).

Optimization with the Statistical Software „R“

16 / 20

The essential idea of Nelder-Mead is, replacing the ‘worst’ point with the following operations:

 Reflection to the center of gravity of the simplex formed by the other points and further

expansion in the same direction if the resulted point is better.

 Contraction of the ‘worst ’point towards the center of the simplex.

 Compression which is the contraction of all points towards the ‘best’ point.

Gradient method – steepest descent method

In contrast to the Nelder-Mead-algorithm, the method of the steepest descent uses the first deri-

vation of the function to find the right direction. The search direction of the next point results

from the negative gradient of the latest point (e.g. Graichen 2012)

 (7)

The next point is calculated by going one step with a certain step size , which can be fixed or

adapted, in the search direction

 . (8)

The process is repeated until or until a stopping criterion is satisfied.

Figure 5 shows the “zig-zagging” of the steepest descent algorithm searching the minimum of the

Himmelblau’s function.

Figure 5: Finding a minimum of the Himmelblau’s function with steepest descent (Gaile 2008).

Based on the simple steepest descent method, the conjugate gradient method, which uses the

information about the derivation of the prior iteration steps, was developed.

Optimization with the Statistical Software „R“

17 / 20

Newton-Raphson – the base of hessian methods

The basic idea of the Newton method is using the knowledge that the minimizer will fulfill the

conditions .

With a Taylor series the tangent of a starting point is linearized

 . (9)

Further it is equalized with zero to find an approximation for . At the next step, is

replaced by . Finally, the algorithm

 is repeated until is close enough

to 0. In contrast to the steepest descent method, it uses the second derivation to find the optimal

direction.

6.2.2 optimx() – solving non-linear optimization problems with “R”

The “R” function optimx() from the package optimx (Nash et al. 2013) has integrated solv-

ers of every above-mentioned type and therefore is a really good and flexible tool. Three basic

arguments are required by the function:

 par: a vector of initial values for the parameters, thus the starting point for the algo-

rithm.

 fn: the objective function. Important is that the first argument of the objective includes

those parameters that will be minimized. Hence, the argument has to be a matrix/vector.

 method: the function optimx() offers different solving methods, amongst them are: a

gradient free method (”Nelder Mead”), a gradient based method(“CG”) and a hessian

method (“BFGS”) based on Newton-Raphson.

With the help of optimx()we will apply now algorithms of the three main methods to minimize

the Himmelblau’s function given in Equation (10). By this, we hope to give a good impression of

the great possibilities offered by optimx() as well as of its easy use.

The Himmelblau’s function, which will be used in the example, is one of the multi modal func-

tions that are used as benchmark function to test the performance of algorithms. Its plot is

shown in Figure 6.

 (10)

Optimization with the Statistical Software „R“

18 / 20

Figure 6: Plot of Himmelblau’s function (Zimmermann 2007).

The function has five local optima under which are four minima with an identical value. The min-

ima are: ; ; and

 . They can be found analytically (Zimmermann 2007).

> library(optimx)

> fn<- function(matrix.A){ # The first argument has to be a matrix of the parame-

ters

+ matrix.A <- matrix(matrix.A, ncol=2) # One column per parameter, one row per

point

+ x<- matrix.A [,1]

+ y<- matrix.A [,2]

+ f.x <- (x^2+y-11)^2+(x+y^2-7)^2

+ return(f.x)

+ }

> par<- c(1,1)

> sol.nelder.mead <- optimx(par, fn, method = "Nelder-Mead")

> sol.CG <- optimx(par, fn, method = "CG")

> sol.BFGS <- optimx(par, fn, method = "BFGS")

> sol.nelder.mead #solution Nelder-Mead method

 p1 p2 value fevals gevals niter convcode kkt1 kkt2

Nelder-Mead 2.999995 2.000183 5.56163e-07 67 NA NA 0 FALSE TRUE

 xtimes

Nelder-Mead 0.02

> sol.CG #solution conjugate gradient method
 p1 p2 value fevals gevals niter convcode kkt1 kkt2 xtimes

CG 3 2 1.081231e-12 119 31 NA 0 TRUE TRUE 0

> sol.BFGS # solution Broyden-Fletcher–Goldfarb-Shanno method

 p1 p2 value fevals gevals niter convcode kkt1 kkt2 xtimes

BFGS 3 2 1.354193e-12 32 11 NA 0 TRUE TRUE 0

Box 6 shows the application of the three above-mentioned methods, which are integrated in

optimx(). For applying the different methods only the method argument has to be changed. In

addition to the solution for the parameter levels and the function value, the output shows the

value fevals, which indicates how often the function fn was called during the computation

and gives so the number of needed iterations. The value gevals indicates the number of calcu-

lated gradients and xtimes puts out the required time for the calculation. With Nelder-Mead,

Box 6: “R” code snippet for the minimization of Himmelblau’s function with help of the methods
”Nelder-Mead”, “CG”, “BFGS”, integrated in optimx().

Optimization with the Statistical Software „R“

19 / 20

the values were found in 67

iterations steps and 2 seconds.

The conjugate gradient method found the exact values of one optimum of the Himmelblau’s

function with ; and It needed 119 iterations and less

than 1 second. The Newton based method, here the Broyden-Fletcher–Goldfarb-Shanno method,

also found the exact solution for one optimum but only needed 32 iterations. Therefore, it seems

to be the most appropriate, out of the three methods, for the minimization of the Himmelblau’s

function. This is not surprising because it is obvious that the two derivations of the function can

be built with little cost.

Starting from the same starting point , all methods found, at least approximately, the

same optimum in and only this one and not the other three local minima of the

Himmelblau’s function.

Nor such cases of multiple optima or global optimization – more complex problems in general –

neither more specific solving algorithms were treated in this paper because this would go be-

yond the scope of this introduction.

7. Conclusion

Optimization is omnipresent and a key technology for statistics, mathematics and economics. Every

person who wants to minimize costs or maximize profit is faced with this topic. The most essential

requirements for optimization are: the knowledge of the problem and the knowledge of an appropriate

solving method. In this introduction, first the most important classification criteria for optimization

problems were discussed. Then, linear, quadratic and non-linear optimization problems were presented

together with the adequate solving functions in “R”. This introduction concentrated on really simple

and common problems and only described the skills of the “R” functions that are necessary for solving

them. Of course, there is a much greater variety of optimization problems and solving methods and

also “R” offers far more possibilities than were presented here. However, with the few “R” functions

presented in this introduction already a lot of optimization problems can be solved in a really easy

manner.

Optimization with the Statistical Software „R“

20 / 20

8. References

Berkelaar, M. et al. (2014): lpSolve: Interface to Lp_solve v.5.5 to solve linear/integer programs. R
package, version 5.6.9, 2014.

Braun, W.J (2013): Numerical optimization. Lecture Notes, 2013. Available online at
http://www.stats.uwo.ca/faculty/braun/ss2864/notes/ch7.pdf.

Braun, W.J; Murdoch, J. D. (2007): A First Course in Statistical Programming with R. Cambridge, New
York, e.a.: Cambridge University Press.

Bravo, H. C. (2013): R interface to CPLEX. R package, version 0.3-1., 2013.

Gaile, S. (2008): Übung zur Vorlesung Optimierung I. Universität Erlangen, 2008.

Geiger, C.; Kanzow, C. (1999): Numerische Verfahren zur Lösung unrestringierter Optimierungsauf-
gaben. Berlin, Heidelberg, New York: Springer Verlag.

Glass, C. W. (2014): Modellierung,Simulation,Optimierung-Vorlesungsunterlagen am Institut für
Höchstleistungsrechnen der Universität Stuttgart. Stuttgart, 2014. Available online at
http://www.ihr.uni-
stuttgart.de/fileadmin/user_upload/teaching/vorlesungsstoff/Modellierung_Simulation_Optimierun
gsverfahren/Vorlesung/2013_2014/MSO1_V11_Optimierung1.pdf, checked on 6/29/2014.

Gould, N. (2006): An introduction to algorithms for continuous optimization. Oxford University. Ox-
ford, 2006.

Graichen, K. (2012): Methoden der Optimierung und optimalen Steuerung. Lecture Notes, 2012.

Henningsen, A. (2012): Linear Programming / Optimization. R package, version 0.9-2, 2012.

Nagesh Kumar, D.(2014): Optimization Methods: Linear Programming- Simplex Method. Available
online at http://nptel.ac.in/courses/Webcourse-contents/IISc-
BANG/OPTIMIZATION%20METHODS/pdf/Module_3/M3L3_LN.pdf, checked on 6/29/2014.

Nash, J.C; Varadhan, R.; Grothendieck, G. (2013): optimx:A Replacement and Extension of the optim
function. R package, version 2013.8.6, 2013.

National Computational Infrastructure (2014): Optimization Toolbox. Available online at
http://nf.nci.org.au/facilities/software/Matlab/toolbox/optim/tutori6d.html, checked on
6/29/2014.

R Core Team (2014): R: A language and environment for statistical computing. R Foundation for Sta-
tistical Computing, 2014. Available online at http://www.R-project.org/.

Sauer, T. (2003): Einführung in die Optimierung für Hörer aller Fachbereiche. Gießen, 2003. Availa-
ble online at www.staff.uni-giessen.de/tomas.sauer/Skripten/HaFOptimierung.pdf, checked on
6/29/2014.

Theußl, S. (2011): Many Solvers, One Interface. ROI, R Optimization Infrastructure, 2011. Available
online at http://statmath.wu.ac.at/courses/optimization/Presentations/ROI-2011.pdf, checked on
6/30/2014.

Theußl, S. (2014): CRAN Task View: Optimization and mathematical programming, 2014. Available
online at cran.r-project.org/web/views/Optimization.html, checked on 6/30/2014.

Turlach, B. A.; Weingessel, A. (2013): Quadprog: Functions to solve Quadratic Programming Prob-
lems. R package, version 1.5-5, 2013.

Verschelde, J. (2005): The Golden Section Search method. Lecture Notes, 2005. Available online at
http://homepages.math.uic.edu/~jan/mcs471f03/Lec9/lec9.html, checked on 6/30/2014.

Zimmermann, U. (2007): Konvexe und Diskrete Optimierung. Die Funktion von Himmelblau. Lecture
Notes, 2007.

Zoonekynd, V. (2012): Vincent Zoonekynd's Blog. Optimization, 2012. Available online at
http://zoonek.free.fr/blosxom/2012/06/01/.

