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1. Introduction 

Support Vector Machines (SVM) are a class of supervised learning algorithms initially proposed 

by Vladimir Vapnik and colleagues in the 1960s for pattern recognition. The main formulation is 

based on the paper  (Vapnik, Cortes 1995). Derived from statistical learning theory, support 

vector machines are used for classification and have recently been extended for regression 

problems and novelty detection.  

Support Vector machines are one of the most effective classification algorithms in machine 

learning, being successfully applied in tasks such as: handwriting recognition, face detection in 

images or text categorization. For the regression case, SVMs show excellent performance in the 

field of time series forecasting, mostly for the energy and financial sectors (Müller et al. 1997).  

Although they have good generalization performance, SVMs are rather slow in the test phase 

(Burges 1998).  

SVMs are based on the structural risk minimization principle. This principle estimates a function 

by minimizing the upper bound of a generalization error or, equivalently by maximizing the 

generalization error (Huson 2007). Thus, SVM achieves a better generalization performance (e.g. 

low error rate on test set) as compared to other neural networks (Tay, Cao 2001). Moreover, 

linear classifiers like the perceptron are efficiently trainable, but have low capacity and can be 

used only for non-symbolic instances. In contrast, non-linear classifiers like neural networks 

have high capacity, however, they face problems like high time complexity, local optima and 

over-fitting (Siebers). SVMs solve the over-fitting problem, because training the SVM is 

equivalent to a quadratic optimization problem which provides a solution that is unique and 

globally optimal. Furthermore, SVMs deal with nonlinear features without explicitly calculating 

them by mapping the data into a higher dimensional space by the use of a “kernel trick”, and this 

feature allows SVM to predict well. Geometrically, SVM uses the optimal hyper plane with the 

maximum margin to separate between two classes of data (Shalizi 2009). 

The support vector machine can also be extended for regression tasks, by using different types 

of loss functions. In this case, the regression is referred to as “Support Vector Regression” (SVR). 

In regression, numerical values for the output are predicted instead of predicting classes (2002).  

This paper aims to provide a brief introduction for the SVM/SVR and observe how it can be 

applied in practice with a prediction task in statistical software R. The paper is organized as 

follows. Section 2 provides the theoretical concepts behind SVM for the task of classification, 

both for the linear and non-linear case. Section 3 covers the case of regression. Section 4 

describes an application of SVM for prediction oil price in R.  Section 5 presents the conclusions 

of the paper.  



Support Vector Machines for Oil Price Prediction 

4 / 21 

2. Theory of Support Vector Machines  

The three main ideas behind Support Vector Machines are: the concept of margin maximization, 

dual representation and the kernel trick. Margin maximization assures that the best linear 

separator is used. Formulating the optimization as in the dual form solves the margin 

maximization problem and kernels allow the representation of non-linear functions using linear 

separators (Shalizi 2009). Each of these concepts are introduced below.  

2.1 Motivation  

In the following, we consider a binary classification problem, where two known class labels are 

given and the objective is to find to which class a new point belongs to. This can be depicted in 

Fig. 1, where there are given two class labels, respectively positive (purple circle) and negative 

(red square). The starting point of SVM are linear classifiers, or to illustrate the intuition, one 

linear classifier known as the perceptron, an algorithm that takes several inputs and gives one 

output out of several possible. The perceptron divides the input into several regions. If there are 

only two classes, the straightforward way to separate the data is through a line.  In Fig. 1, several 

separating lines (A,B,C or D) make it possible to separate the two classes.  

Points with positive 
class label: 

Points with negative 
class label:

A
B

C

D

 

Figure 1. Perceptron Separating Possibilities. 

The perceptron’s task is to decide on which side of the decision boundary a point belongs to. 

Mathematically, this is equivalent to evaluating a function equal to the sum of the weighed 

inputs and checking whether the sum is positive or negative. Geometrically, “weighing” is 

equivalent to the slope of the separating line. In order to choose the correct separator, the 
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perceptron applies a “learning algorithm” which adjusts the line so that all the points lie on the 

correct side of the line.  

However, the perceptron has two limitations. Firstly, there exist several possibilities to separate 

the data and the perceptron does not have a criteria on choosing the best one (Bishop 2006). For 

example, in Fig. 1, all of the separating hyper planes A, B, C, or D can be used to separate the two 

classes. Secondly, it can only solve problems which are linearly separable, so it never converges 

in this case.  

The best separator is found to be the one with the maximum margin. This means that the 

distance to the closest points is maximum. The closest data points are known as the support 

vectors, and only these points are relevant in order to classify a new point (Ben-Hur, Weston 

2010).  

Statistical learning theory is the framework which helps define the maximum margin separator 

as the optimal separator. Statistical learning theory or VC theory refers to the ability of learning 

machines to generalize well to unseen data. The idea from statistical learning theory that led to 

SVMs is the structural risk minimization principle, which minimizes an upper bound of the 

generalization error rather than the training error (Tay, Cao 2001). The main concept is that of a 

VC dimension (Vapnik-Chervonenkis), a measure of how many classifications can be 

implemented from that hypothesis space. The generalization error is bounded by the sum of the 

training error and a confidence interval term that depends on the VC dimension (Burbidge, 

Buxton 2001).  

2.2 Linear Support Vector Machine 

In the binary linear classification problem described in section 2.1, a straight line can be used to 

separate data in a two dimensional space. However, in higher dimensional spaces data is 

separated by using hyper planes. There might exist several hyper planes to achieve this, but the 

SVM’s goal is to find a separating hyper plane that maximizes the margin. The margin is defined 

as the equidistance from the separating hyper plane to the closest data points; these points are 

known as the “support vectors”.  

According to Vapnik’s original formulation (Vapnik, Cortes 1995), the training data set is of the 

form        , with i=1,…,n,             and    represents the input vectors (the features) and    

represents the class labels    or   .  

A linear classifier can be described with a linear function of the form           , where 

    denotes the dot product defined as ∑      ,   is the weight vector,   is called “bias” and 
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represents the distance from the origin to the separating hyper plane. The sign of      

determines on which side of the hyper plane a new point will be classified into. In this context, 

we define the decision boundary of a classifier as the boundary lying between the regions 

classified as belonging to one class and the other (Ng 2007). 

2.2.1 Optimal Separating Hyper Plane 

A hyper plane can be represented by a pair ( ,  ), where   is the normal to the hyper plane and 

  is a constant. The equation describing the hyper plane is        . These can be depicted 

in Fig. 2. 

Margin

Support Vectors

Separating 
Hyperplane

    H1

    H2

w 

Points with positive 
class label: 

Points with negative 
class label:

b

 

Figure 2. Optimal separating hyper plane. 

To implement the SVM, we have to find the values of   and   which satisfy: 

{
                      
                           

 

These two relations can be combined into a single equation                . 

The support vectors are defined as the points for which the two inequalities from above hold. 

They lie on the hyper planes   :          and   :          , shown with dotted 

lines in Fig. 2.  

The margin is defined as 
 

‖ ‖
, where ‖ ‖ is the norm of vector  . In order to find the optimal 

separating hyper plane, the margin needs to be maximized. Through a few mathematical 

transformations, it can be shown that maximizing the margin is in fact equivalent to minimizing  
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 ‖ ‖   with respect to   and   so that the condition                 is satisfied 

(Burges 1998).  This is a constrained quadratic optimization problem (QP) also known as the 

primal problem. The optimal margin separator results as the solution to this optimization 

problem (Ben-Hur, Weston 2010).  

2.2.2 Solving the Optimization Problem: Duality 

In order to solve the QP problem from the previous section, we formulate it as a Lagrangian 

optimization problem. The idea is to use dot products to represent test and training data. These 

play a key role in the kernel trick described in section 2.4. We introduce Lagrange multipliers   , 

and the representation in terms of    is known as the dual form (Ng 2007). The QP problem 

therefore becomes 

   
 

 
 ‖ ‖     [            ]   

 

 
 ‖ ‖   ∑  

 

   

[            ]  

The goal is to find    which maximizes, and   and   which minimize the expression of   . We 

calculate the partial derivatives of    with respect to   and   and set them to zero 

   

  
     ∑      

 

   

  

   

  
   ∑      

 

   

   

By substituting these relations in the formulation of    from above, we get the dual formulation 

of the primal problem. The advantage of the dual form is that it is a relation written only in 

terms of inner products of the input vectors    

    ∑  

 

   

 
 

 
∑             
   

 

s. t.         ∑        
   . 

In order to solve the dual problem, we need to maximize the expression of    and find the values 

of   . This is done by solving the QP problem, which will return the value of   .  The value of   is 

found using the support vectors (Bennett 2003). Solving the dual maximization problem is 

equivalent to training the SVM. There are several approaches available to training the SVM. One 

of the most popular approaches, which involves choosing 2 Lagrange multipliers at a time is 

called the Sequential Minimization Algorithm (SMO). The advantage of SMO lies in the fact that it 
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solves the problem analytically and therefore avoids numerical quadratic programming, so it 

provides an efficient way to deal with the dual problem  (Bishop 2006).  

Once we have trained the SVM, the classifier will assign a label on a new input test point   , 

depending on which side of the decision boundary the point will lie on. Hence, a new point will 

be classified according to the decision function                   . This corresponds to the 

testing phase of the SVM (Burges 1998). 

Both the quadratic problem and the dual formulation depend only on inner products between 

input vectors. This allows for the use of the “kernel trick” and for extending the algorithm for the 

non-linear case, which will be introduced in section 2.4.  

2.3 Soft Margin SVM 

For the case when data is not fully separable, we have to allow for misclassified points by 

introducing slack variables           in the constraints. Therefore, some points will lie on the 

wrong side of the hyper plane. This can be seen in Fig. 3, where one of the points belonging to 

the positive class label lies with the points belonging to the negative class label. In this so called 

“soft margin” SVM, data points which lie on the incorrect side of the boundary get a penalty, or 

“cost”  which increases with the distance from it (Fletcher 2008).  

    H1

    H2

w 

Points with positive 
class label: 

Points with negative 
class label:

-σ/|w| 

-b/|w| 

Misclassified
point

 

Figure 3. Soft Margin Support Vector Machine. 

The constraints become 

           , if     , 
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            , if       , where         . 

The objective function in the primal described in the previous section is then re-formulated as 

   
 

 
 ‖ ‖   ∑  

 

   

 

w.r.t.                   , 

where the parameter   represents the tradeoff between the penalty and the size of the margin, 

or more exactly the tradeoff between maximizing the margin and minimizing the training  error 

(Bishop 2006). Similarly to the linearly separable case, the problem is formulated as a 

Lagrangian, with the only difference that a new constraint is introduced        (Fletcher 

2008). A complete derivation for this case is given in (Burges 1998).  

2.4 Non-linearly Separable Data: Kernel Trick 

To tackle the second limitation of the perceptron mentioned in section 2.1, mainly the non-

linearity of the input data, the SVM uses a non-linear mapping to projects the data into a higher 

dimensional feature space where the data is linearly separable. This is achieved by applying a 

function called a “kernel” which computes a dot product of the input data.  

For classification and regression problems where the data is not linearly separable, the SVM is 

adapted to the nonlinear case by a mapping        from the input space   into the into a 

higher dimensional feature space   where it is possible to separate the data. This is done using a 

non-linear function           , and in this case the SVM can be represented by the decision 

function              , where      is known as the feature map (Ng 2007).  

The weight vector can be expressed as a sum of dot products of input vectors, 

   ∑          
 
   , which allows the decision function to be formulated as      

∑          
 
          .  

Transforming the data from the lower dimensional feature space into the higher dimensional 

space is achieved by means of a kernel function. The kernel function is defined as an inner 

product between the feature maps 〈       (  )〉.  This dot product is replaced by a kernel 

function. By replacing the kernel function into the dual problem, we can find linear separators in 

high dimensional feature spaces (Dharnidharka 2012). This transformation is known as the 

“kernel trick”.  

The mapping is introduced into the objective function and the optimization problem becomes 
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    ∑  

 

   

 
 

 
∑                 
   

   

such that          , 

∑      

 

   

  

Substituting the kernel function into the dual problem gives the nonlinear classifier 

    ∑  

 

   

 
 

 
∑         (     )

   

  

such that             

∑        
    (Bennett 2003). 

Thus, in terms of the kernel function, the decision function can be written in the form 

     ∑      (     )
 
      . 

Hence, operations are performed in the input space and the kernel in the input space is just the 

equivalent of the inner product in the feature space (Gunn 1998). The “kernel trick” means that 

training sets which are not linearly separable in an input space can be transformed so that they 

become linearly separable in the feature space. In this higher dimensional feature space we can 

find linear separators, but in the original space the separators are non-linear. An example can be 

seen in the figure below, where the function ɸ        = (  
   √         

   is used to map the 

original input space     into a higher dimensional feature space      (Üstün et al. 2006). 

ᵩ 

 x1

x2

z1

z2

z3

 

Figure 4. Illustration of the “kernel trick”. Figure adapted from (Üstün et al. 2006). 
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As a criteria to decide which function  (     ) corresponds to a dot product in a feature space, 

we take into account Mercer’s Theorem. This gives the necessary and sufficient condition for a 

valid kernel. It states that every symmetric kernel function with a positive definite 

corresponding kernel matrix is the equivalent of a dot product in some feature space (Russell, 

Norvig 2010).  

The advantage of kernel functions is that one can evaluate the inner products without explicitly 

calculating the mapping; which otherwise can prove to be an expensive computation. If the value 

of the function  (     ) is known, then the mapping function does not require calculating 

explicitly. Instead, one can use the value of the kernel. Mathematically, the kernel function is 

based upon reproducing Hilbert Spaces, which are just a generalization of Euclidean spaces 

(Burges 1998).  

The most common kernel functions for regression and classification are: 

 Linear kernel  (     )  〈  
   〉,  

 Polynomial kernel defined by  (     )  (〈  
   〉   )

 
,  

 Gaussian kernel  (     )   

 (
‖     ‖

 

   )

, 

where   represents a constant, d the dimension; and   represents a weighing factor (Shalizi 

2009), more exactly the width of the Gaussian (Fletcher 2008).  

The SVM described above is known as C-SVM formulation. In addition to this formulation, there 

is an alternative one known as the  -SVM formulation. In this case, parameter C is replaced by   

which represents the upper bound on the fraction of margin errors and the lower bound on the 

fraction of support vectors (Schölkopf et al. 2000). The advantage of this formulation is that it 

gives more control over the number of support vectors (Meyer 2012). 

2.5 Model Selection  

The parameters of the kernel function, the cost function from the soft margin SVM and for the 

regression described in section 3 are called the hyper-parameters of the SVM. The choice of 

these parameters have a significant effect on the decision boundary, and for classification tasks 

it strongly affects the accuracy of the classifier (Ben-Hur, Weston 2010). The most common 

approach to find the optimal parameters is to perform a grid search and then train the SVM with 

the parameters returned by the grid search. Also, finding the best kernel strongly depends on 

the data and it is mostly chosen by trial and error (Burges 1998).  
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3. Support Vector Regression 

Section 2 presented the SVM for classification problems. However, for regression problems, the 

aim is to predict real valued ouput numerical values. Support vector regression (SVR) makes use 

of an  -sensitive loss function or error function, which satisfies                . This 

function can be described by  (Bishop 2006) 

      {
                    |         |    
|         |                 

 

Thus, the function does not allocate an error if the absolute value of the difference between the 

predicted value    and the actual value is smaller than the value of   (Smola, Vishwanathan 

2010). As opposed to classification, in regression the value of    is given, and the objective is to 

find a hyper plane which has all the training points lying inside a tube bounded by     , called 

  -sensitive tube”. This can be seen in Figure 5.  

y

y+ɛ+ 

y-ɛ- 

σ+ >0 

σ-<0 

Optimal 
hyperplane

ɛ 

ɛ 

x 

y 

-ɛ +ɛ z

E(z) 

loss

Support 
Vectors 

 

Figure 5. Support Vector Regression: loss function (above) and "ϵ-sensitive tube” (below). 
Figure adapted from (Üstün et al. 2006). 

Analogously to the soft margin SVM defined above, the points which lie outside the tube are 

assigned a slack penalty, which can be either positive   
  or negative    

 , depending whether 

they lie above or below the tube. The slack variables are zero for the points inside the tube 

(Fletcher 2008).  
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For SVR, the primal problem is formulated as follows 

min 
 

 
‖ ‖   ∑    

    
   

     s.t. 

  
      

    , 

              
    , 

              
    .  

where C represents a regularization constant. Both C and   are parameters which are chosen 

beforehand by the user and are determined empirically (Cao, Tay 2012).  

The primal can be solved as before, by introducing Lagrange multipliers   
 ,   

 and by setting up 

the Lagrangian dual formulation. By optimizing the Lagrangian and setting the partial 

derivatives with respect to the primal variables to zero, we can reformulate the dual problem as 

maximizing    with respect to   
    

 , or, more exactly 

   ∑ (   
    

    )    
   ∑    

    
   

 

 
 
   ∑    

    
        

    
      . 

A complete mathematical derivation of the SVR can be found in (Fletcher 2008).  

Finally, each new input point is predicted by evaluating the decision function      

∑    
    

  〈   〉    
   . The support vectors are those points lying on the boundary of the  -

sensitive tube or outside the tube, or mathematically, the points for which both   
    

   . The 

decision boundary will depend once again only on the support vectors (Bishop 2006). The 

support vectors are usually a small subset of the training data and the property that the solution 

of the SVM will dependent only on these data points is known as the sparsity of the solution. 

Also, minimizing the Lagrange multipliers reduces the number of support vectors (Müller et al. 

1997).  

The support vector regression described above is known as  -SVR (Vapnik, Cortes 1995). SVR 

can implement other loss functions such as Laplace loss, Huber loss or square loss (Smola, 

Vishwanathan 2010). Similar to the classification case, SVR can be extended for non-linear 

regression tasks by the use of kernels, as described in Section 2.4.  

Other regression formulations include  -SVR, which unlike  -SVR where the errors are not 

relevant as long as they are less than   (Smola, Scholkopf 2004), uses a parameter   to control 

for the number of points lying outside the  -sensitive tube (Bishop 2006). The  -SVR was 

proposed by (Schölkopf et al. 2000), its main advantage compared to the latter being that it 

allows the tube to adapt automatically to the data by setting a parameter       that restricts 
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the points which lie outside the tube, this way controlling for the number of errors. A full 

derivation of the algorithm is given in (Schölkopf et al. 2000). Finally,   just represents the 

fraction of bad outliers and  -SVR differs from  -SVR just in the choice of parameters C and  , 

which replace   and C.  -SVR solves the problems that come up with introducing C, which might 

be difficult to tune.   controls the number of support vectors and margin errors.  

The regression estimation is done by risk minimization, and Vapnik’s  -sensitive loss function is 

used as a measure of this risk. SVMs use a risk function which consists of two terms: the 

empirical error and the regularization term, both derived from the structural risk minimization 

principle (Tay, Cao 2001).  

4. Oil Price Prediction in R 

The previous sections have described the theoretical concepts behind SVMs. In the following, an 

example of a SVM implemented in the statistical software R is presented. More exactly, a SVR is 

estimated on a time series of oil price data in order to observe how different economic variables 

affect the price oil.   

4.1 Implementation in R 

In R, there are several SVM implementations available in packages like e1071, kernlab or klaR. In 

this paper, SVM is implemented through the function svm() in package e1071. This particular 

package offers an interface to the C++ implementation libsvm by Chih-Chung Chang and Chih-Jen 

Lin (Meyer 2012). In libsvm, the most popular formulations of SVM are available: C-SVM,  -SVM, 

 -SVR,   -SVR and also novelty detection. The function svm() is used to train the SVM, and it can 

be set to perform classification, regression or novelty detection. Depending on whether the 

dependent variable y is a factor or a numeric vector, SVM can be used for classification or 

regression tasks. In addition, the function has specific configurations, allowing the user to 

choose different types of kernels, their parameters, and other features such as: probability 

values for prediction, class weighing in the case of classification, cross-validation to compute 

training error or shrinking heuristics. The function returns an object of class svm which includes 

the number of support vectors, the type of the SVM formulation, and the parameters of the SVM.   

The package also provides a predict() method which predicts values based on the trained model. 

To tune the hyper-parameters of the SVM, the function tune() performs a grid search over 

specified parameters ranges. For classification tasks, the plot() function allows visualizing the 

data by showing the classes, the support vectors and the decision boundaries (Meyer 2012).  
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4.2 Data and Model Description 

The practical part of this paper requires running a SVR to predict the WTI crude oil price. The 

dataset includes time series with a total of 2352 daily observations from 2003 until 2012 and it 

was retrieved from http://www.quandl.com/. The parameters used for the regression are 

presented in Table 1.  

Parameter Description Frequency 

WTI West Texas Intermediate, 

Crude Oil Spot Price, US$/ 

Barrel 

Daily 

DJI Dow Jones Industrial Average Daily 

GDP GDP of USA Monthly 

AllNetOptimismHEOfWords Oil News Sentiment Values, 

retrieved from dataset 

“Aggregate_Full” 

Daily 

wtilag Lagged oil price value from 

previous day 

Daily 

Table 1. Models used for SVR. 

The dataset is divided into a train and a test set, 1/3 for training the model (702 observations) 

and 2/3 for testing (1649 observations) the model.  

Six regression models are trained, tested and tuned for best values of C and  . Models are then 

trained using different kernel functions, and the effect is observed using different metrics 

discussed in the following. WTI oil price is predicted for a 10 day horizon on the test set. The 

objective is to see how the other variables influence the oil price. These models are explained in 

Table 2.  

Model Dependent Variable  Independent Variables  

1 WTI GDP, wtilag 

2 WTI GDP, DJI, wtilag 

3 WTI GDP, DJI, “Oil News”, wtilag 

4 WTI DJI, wtilag 

5 WTI DJI, “Oil News”, wtilag 

6 WTI “OilNews”, wtilag 

Table 2. Models used for SVR. 

http://www.quandl.com/


Support Vector Machines for Oil Price Prediction 

16 / 21 

4.3 Prediction Performance 

We want to measure the predictive power of the models and we estimate it by computing the 

accuracy of the prediction on the test set. The prediction performance is evaluated by using 

three of the most popular evaluation metrics in forecasting: mean absolute error (MAE), root 

mean squared error (RMSE), mean squared error (MSE). MAE is defined as the absolute value of 

the difference between the actual value     and the predicted value   . RMSE is just the squared 

root between the actual value and the predicted value, and MSE is the average of the squared 

errors. The smaller the MAE and the RMSE, the better the accuracy of the prediction (Bruno 

2008). In addition, the Mean Absolute Percentage Error (MAPE) measures the percentage 

difference of the errors. The advantage of the MAPE is that it is a relative error and it provides a 

measure of errors as a percentage of the actual data (Makridakis, Hibon 1995). The calculation 

of these errors is presented in Table 3. 

Evaluation metrics Calculation 

MAE 
     

∑ |     |
 
   

 
 

RMSE 

     √
∑        

  
   

 
 

MSE 
     

∑        
  

   

 
 

MAPE  
     

    

 
 ∑|

     

  
|

 

   

 

Table 3. Evaluations metrics and their calculation. 

These errors are implemented through the package “Metrics” in R, which provides evaluation 

metrics for machine learning. Their values for each model are summarized in Table 4. In 

addition, the effect of different kernel types and tuned values of model hyper parameters are 

observed on the model performance.  

Model Kernel and 

Parameters  

Evaluation Metrics 

RMSE  MSE  MAE  MAPE  

 

 

Model 1 

Radial  1.199 1.437 0.951 0.0105 

C=16,   =0.5 1.437 2.066 1.106 0.012 

Polynomial  1.456 2.122 1.115 0.012 

Sigmoid  1801.61 3245803 1798.52 19.76 

Linear  1.261 1.592 1.046 0.011 
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Model 2  

Radial  2.363 5.584 1.942 0.022 

C=100, 

 =0.001 

1.391 1.936 1.070 0.011 

Polynomial  1.815 3.296 1.520 0.016 

Sigmoid  1333.45 1778109 1309.54 13.985 

Linear  1.394 1.945 1.080 0.011 

 

 

Model 3  

Radial  2.422 5.868 1.334 0.014 

C=16,   =0.1 1.635 2.674 0.997 0.010 

Polynomial 1.687 2.846 1.172 0.012 

Sigmoid 392.76 154267.5 314.66 3.38 

Linear  0.837 0.700 0.773 0.008 

 

 

Model 4 

Radial 0.882 0.778 0.770 0.882 

C=16,   =0.5 0.899 0.809 0.767 0.008 

Polynomial  1.01 1.02 0.866 0.009 

Sigmoid 1211.55 1467859 1152.503 12.066 

Linear  0.752 0.566 0.653  0.006 

 

 

Model 5 

Radial 3.628 13.167 2.151 0.023 

C=8,   =0.5 2.909 8.464 2.102 0.022 

Polynomial 1.382 1.910 1.154 0.0126 

Sigmoid 253.72 64376.66 179.67 1.966 

Linear  1.194 1.425 1.046 0.011 

 

 

 

Model 6 

Radial  1.556 2.423 1.217 0.013 

C=100, 

 =0.001 

1.273 1.622 1.081 0.119 

Polynomial 1.262 1.594 1.079 0.011 

Sigmoid 266.73 71148.54 259.83 2.848 

Linear 1.283 1.648 1.086 0.011 

Table 4. Values for the metrics used to assess the models. 

Model 4 displays the lowest values of the RMSE and MSE, so we can conclude that it is the best in 

terms of predictive power. Furthermore, the effect of different kernels on the models is 

observed. When trained with the radial kernel and linear kernel, the RMSE and MSE of all 

models improve significantly. The accuracy also improves for some of the models when training 

again with the radial kernel and the tuned parameters resulted from the grid search.  

In addition to these criteria, which measure how far the actual value is from the predicted value, 

a further evaluation criteria is used. A Diebold-Mariano Test (DM Test) compares the forecasting 
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accuracy between models, in terms of the significance of differences between them (Bruno 

2008). This is implemented through the library forecast() in R. We compare the models, testing 

the null hypothesis that one model has greater prediction power than the others. Table 5 

displays the p-values of the test performed between all two combinations of models.  

DM Test: 

p-value 

Model 1  Model 2 Model 3 Model 4  Model 5 Model 6 

Model 1  - 0.999 0.895 0.991 0.952 0.850 

Model 2 0.0003 - 0.050 0.065 0.028 0.016 

Model 3 0.104 0.949 - 0.833 0.601 0.342 

Model 4 0.008 0.935 0.166 - 0.112 0.049 

Model 5 0.047 0.971 0.398 0.887 - 0.222 

Model 6 0.149 0.983 0.657 0.950 0.777 - 

Table 5. Diebold-Mariano Test and returned p-values. 

From Table 5, we can see that for Model 1, p>0.1, so we fail to reject the null hypothesis. Hence, 

model 1 has greater predictive performance than all other models at the 10% significance level. 

For Model 2, we reject the null hypothesis that model 2 has greater performance than model 1, 3, 

5 and 6 at the 5% level, but we fail to reject the hypothesis that model 2 has greater predictive 

performance than model 4, thus model 2 is significantly better at the 5% significance level. 

Model 3 has greater performance than model 1 at the 10% significance level, and greater than all 

other models at the 5% significance level. Model 4 has greater performance than model 2 and 

model 6 at the 5% level, and greater than model 3 and 5 at the 10% significance level; however 

it’s not better than model 1 at the 1% significance level. Model 5 is significantly better than 

model 2, 3, 4 and 6 at the 10% level, but not significantly better than model 1 at the 5% level. 

Model 6 is significantly better than all other models at the 10% significance level.  

Relationships between variables can be visualized with a plot called a “heat map”. Oil price 

values, DJI values and sentiment values on oil prices are put together in a matrix which is then 

plotted. The heat map is a way to visualize the data in the matrix. Colors are used to display 

numerical values. High values are displayed with hot orange and red tones, and lower values 

with yellow tones. Similar rows and columns are grouped together by hierarchical cluster 

analysis. There are a lot of patterns of about the same color in the heat map, this suggests that 

rows are correlated with columns.  
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Figure 6. Heat map displaying Oil News, DJI and WTI Oil Price. 

5. Conclusion 

In this paper, the theoretical background of Support Vector Machines were explained for the 

tasks of classification and regression. SVMs have several advantages compared to other machine 

learning techniques. However, tuning the SVM remains rather an “art”, with the choice of hyper 

parameters visibly affecting the performance of the SVM. A support vector regression was 

applied for the task of predicting the WTI crude oil price. Different models were evaluated in 

terms of their prediction performance and the effect of different kernel functions and model 

hyper parameters was observed on the accuracy of the prediction. Finally, a recommendation 

was made in favor of  Model 4.  
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