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1. Introduction 

This paper will give an introduction to three non-parametric methods for data analysis and evaluation. 

These methods are the Generalized Additive Model, Locally Weighted Scatter Plot Smoothing and 

Kernel Regression. To garner an appreciation and therefore an understanding of why and when a non-

parametric evaluation method is required, it is important to begin with the assumptions and thus 

limitations of the standard parametric model of linear regressions. Firstly, the estimation of a 

parametric regression requires an underlying theory to provide a strong functional linkage between the 

covariates. Secondly, the user must make an assumption regarding the underlying distribution of the 

population and of the error term. Finally, while there are tools to deal with non-linear relationships in 

the standard linear model, for example polynomials, these methods still require a presumption 

regarding the functional form of the model. Figure 1 illustrates an example of a non-linear data 

generating process and the difficulty of fitting a linear Ordinary Least Squares (OLS) model.  

The methods introduced in this paper require none of the assumptions and thus do not have the 

limitations of the standard parametric linear model. All three concepts are highly adaptive methods 

that can be easily applied to evaluate non-linear and non-parametric problems in order to find the true 

form of the data generating process. Non-parametric methods require no theoretical basis for the 

functional form of the model or assumptions regarding the underlying distribution. The results are data 

driven, as the aim is to estimate the best fit based upon the data itself. Figure 1 illustrates a simple 

comparison between the fitted values of the linear OLS model and the fitted values of the non-

parametric Kernel Regression model.  

The Generalized Additive Model extends the linear model by allowing for both parametric and non-

parametric covariates. This allows the user to easily incorporate both linear and non-linear 

relationships between the variables of interest. Locally Weighted Scatter Plot Smoothing uses a locally 

weighted regression to fit a non-parametric smooth function to the data. Finally the Kernel Regression 

method estimates the conditional expectation and fits a non-parametric smooth function using kernel 

functions to compute the unknown probability density function.  
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Figure 1: The dataset cps71 plotted with both a linear and a non-parametric estimation for comparison.  

Commands in R will be listed in red and the output in blue. 

This paper provides an introduction into the three different non-parametric evaluation techniques. 

Section 2 introduces the Generalized Additive Model, the algorithm used to fit the model and an 

example of the application of the method in R. Section 3 introduces the LOWESS method, the 

algorithm and an example of its application in R. Finally Section 4 introduces the Kernel Regression 

method via an explanation of the Kernel Density Estimator; again, an example of its application in R is 

also provided.  The dataset cps71 was used for the application of each of the methods; it is pre-

packaged with the software package R. It is a cross-sectional dataset of Canadian high school graduate 

earnings. The variables are logwage and age. There are 205 observations in total.  

2. Generalized Additive Model  

The Generalized Additive Model (henceforth GAM) is a natural extension of the linear generalized 

model that allows non-linear relationships between the dependent and independent variables. The key 

feature of GAM is that it is additive.  This allows the user to combine parametric and non-parametric 

covariates while still being able to conduct inference and interpret individual effects in a ceteris 

paribus manner.   
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2.1 Method 

GAM is an extension of the linear generalized model. To explain the concept let us begin with the 

traditional linear model that has the following structure 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1+. . . +𝛽𝑛𝑥𝑛 + 휀𝑖. 

The idea of the GAM method is to replaces the linear component 𝛽𝑖𝑥𝑖 of the model with a smooth 

non-linear function 𝑓𝑛(𝑥𝑛). The resulting functional form may appear like this   

𝑦𝑖 = 𝛽0 + 𝑓1(𝑥1)+. . . +𝑓𝑛(𝑥𝑛) + 휀𝑖. 

The conditional mean denoted 𝜇(𝑥) of the response variable is related to the independent variables via 

the link function 𝑔(𝜇(𝑋)). The link function depends on the error distribution of the response variable 

and can be selected accordingly from the exponential family of sampling distributions. Three common 

link functions (as taken from Hastie et al. 2008) are the gaussian 𝑔(𝜇) = 𝜇, the binomial 𝑔(𝜇) =

𝑙𝑜𝑔𝑖𝑡/𝑝𝑟𝑜𝑏𝑖𝑡(𝜇) and the poisson 𝑔(𝜇) = log(𝜇).  

The function 𝑓𝑖(𝑥𝑖) is estimated non-parametrically and thus automatically reveals the degree of non-

linearity in 𝑥𝑖. The covariates may take multiple forms including parametric, semi-parametric and non-

parametric. This allows the combination of qualitative, linear and non-linear variables. The following 

are examples of different potential functions forms of GAM method given by Hastie et al. (2008):  

𝑔(𝜇) = 𝑋𝑇𝛽 + 𝛼𝑘 + 𝑓(𝑍) 

where X is a linear vector of predicators, 𝛼𝑘 is a qualitative factor and Z is a non-parametric covariate. 

The second example given by Hastie et al. (2008) is 

𝑔(𝜇) = 𝑓(𝑋) + 𝑔𝑘(𝑍) 

where 𝑔𝑘(𝑍) is an interaction term between a qualitative and non-parametric covariate. The final 

example given by Hastie et al. (2008)  

𝑔(𝜇) = 𝑓(𝑋) + 𝑔(𝑍, 𝑊) 

where the term 𝑔(𝑍, 𝑊) is a non-parametric function in two features. 

2.1.1 Fitting the Model 

There are multiple options to estimate the function 𝑓𝑖, the default generally being a scatter plot-

smoothing algorithm. The LOWESS method (see section 3) is just one variation. Smoothing can 

estimate a non-parametric fit to non-linear data based on the idea of estimating local regressions. This 

makes it very flexible, allowing its application to a range of data scenarios. Further, the level of 
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smoothing required gives the user an insight into degree non-linearity of the data. The GAM output 

will list the degrees of freedom (henceforth df) for each variable which indicates the required amount 

of smoothing. The higher the degrees of freedom, the more non-linear the data; for example, df=8 

indicates that the data is highly non-linear while df=1 indicates the data is linear.  The final step is 

then to estimate simultaneously all the functions 𝑓𝑖(𝑥𝑖) in order to estimate the model 𝑌 = 𝛼 +

 ∑ 𝑓𝑖(𝑥𝑖) + 휀
𝑝
1=𝑖  using the backfitting algorithm (Hastie et al. 2008).  

2.1.2 The Backfitting Algorithm 

The algorithm applies a cubic smoothing spline 𝑆𝑖 to the targets {𝑦𝑗 − �̂� − ∑ 𝑓𝑘𝑘≠𝑗 (𝑥𝑗𝑘)} as a function 

of 𝑥𝑗𝑖 to obtain the estimate 𝑓𝑖. It repeats this for each predicative variable, one after the other, using 

the current estimate of the other functions 𝑓𝑘. This continues until the estimator is stabilised. The 

algorithm is adaptable and different smoothing techniques 𝑆𝑖 can be implemented for example kernel 

methods, surface smoothers and periodic smoothers. The Backfitting Algorithm attempts to fit all the 

predicators, which, if there are many, is not feasible (Hastie et al. 2008). 

The algorithm was developed by Leo Breiman and Jerome Friedman and is set out in Hastie et al. 

(2008).  

1. Initialise:  �̂� =
1

𝑁
∑ 𝑦𝑖

𝑁
1 , 𝑓𝑖 ≡ 0, ∀𝑖 

2. Cycle: i=1,2,…p,…1,2,…p until convergence is achieved.  

𝑓𝑖 ← 𝑆𝑖[{𝑦𝑗 − ∑ 𝑓𝑘𝑘≠𝑗 (𝑥𝑗𝑘)} 𝑁
1

], the backfitting step 

𝑓𝑖 ← 𝑓𝑖 −
1

𝑁
∑ 𝑓𝑖(𝑥𝑗𝑖)𝑁

𝑖=1 , mean centring of the estimated function. 

Continue until 𝑓i changes less than a predetermined amount. 

 

2.2 Application in R 

There are two packages available for installation to implement the generalized additive model in R. 

The first package gam was coded by Trevor Hastie and uses the Backfitting Algorithm outlined 

section 2.1.2. The second package mgcv developed by Simon Wood uses an alternative method of 

penalized splines with automatic smoothness selection. This section will illustrate how to implement 

GAM in R using the appropriate function call signs.   
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2.2.1 Function Call Sign 

install.packages(“mgcv”) 

library(mgcv) 

The arguments for the code are the same for both methods 

gam(formula, family=gaussian, data, method) 

formula the regression function response ~ predicators. The selection of the 

smoothing method can be implement by s for smoothing splines or lo for loess. Additional 

smoothers can be added via interface function. 

family gives a description of the error distribution and the link function to be used in the 

model. Options include Gaussian, binominal etc.  

data the data set from which contains the selected variables.  

method the method used to fit the parametric part of the model.  

2.2.2 Example  

The model is then estimated using the following command. 

gam_2 <- gam(logwage ~ s(age), data=cps71) 

summary(gam_2) 

Family: gaussian  

Link function: identity  

 

Formula: 

logwage ~ s(age) 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 13.48988    0.03698   364.8   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

        edf Ref.df     F  p-value     

s(age) 6.69  7.801 12.03 4.36e-14 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.308   Deviance explained =   33% 

GCV = 0.29129  Scale est. = 0.28036   n = 205 
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The code summary(gam_2) reveals the regression output shown above. The effective degrees of 

freedom(edf), reveals the degree of non-linearity. The predicator variable age has an edf of 6.69, this is 

further evidence that its effect is non-linear.  

 

 

Figure 2: GAM estimated using the package mgcv with standard error bounds. The y-axis is the estimated degrees of freedom of the 

covariate age. 

2.3 Summary 

The Generalized Additive Model is a data driven approach that allows the user to easily incorporate 

non-linear relationships between covariates. The model replaces the linear component with a function 

computed using a smoothing algorithm. It retains the additivity and thus interpretability of the 

traditional linear model. However it tends to have a significant advantage in predictive power when 

compared with the linear model as it is able to combine parametric and non-parametric terms. The 

downside of additivity is that all predictors need to be added manually. If a model has large numbers 

of predicators important interactions may be missed (James et al. 2013). 

3. Locally Weighted Scatter Plot Smoothing 

Locally Weighted Scatter Plot Smoothing (henceforth LOWESS) is a data analysis technique to 

estimate smooth values for noisy data. The user can estimate fitted values without needing to specify a 

function form for the model, thus allowing this method to be easily applied to non-linear data. The 
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systematic relationship between a set of variables is captured by the fitted LOWESS curve. The 

addition of the fitted curve can, when implemented correctly, enrich the visual information given by a 

scatter plot of the dataset.  

LOWESS falls into the category of both local and non-parametric regressions. The idea of the local 

regression method is to estimate a target point using nearby observations, which are weighted based on 

their proximity. The user therefore cannot make a global assumption regarding the functional form of 

the relationship however locally it is possible (Cleveland 1979). A non-parametric regression does not 

require the functional form of the model to be pre-specified, as explained above.  

3.1 Method 

Given the data generating process 𝑦𝑖 = 𝑔(𝑥𝑖) +  휀𝑖, where 𝑔(∘) is an unknown function, our aim is to 

compute a smooth estimate of it. The data can be represented in a scatter plot (𝑥𝑖  , 𝑦𝑖) where i=1…n.  

The user selects a smoothing parameter 𝑓 ∈ (0,1). The smoothing parameter dictates the proportion of 

the data that will be within each bandwidth used to estimate the smoothed value. Within each 

bandwidth, a linear polynomial is fit to the data using a weighted least squares local regression. The 

weighting function 𝑤𝑘(𝑥𝑖) is centred at the target observation for each bandwidth (Cleveland 1979). 

Applying the nearest neighbour algorithm, the observations are weighted based on their proximity to 

the target observation. For example, the closer that observation 𝑥𝑖 is to the target point, the higher 

weight it receives in estimating �̂�𝑖 (Liu 2015). This because the closer data points are within the 

explanatory variable space, the more highly they are correlated.  

The estimation of the smoothed value can often be distorted due to the presence of outliers within the 

data (Liu 2015).To ensure the smoothing procedure is robust to outliers, an extension can be selected 

that weights the residuals of the fitted values. The robustness weight given to outliers is small, thus 

reducing the impact on the estimate values (Cleveland 1979). This procedure can be repeated for as 

many iterations as required until a desired fit is achieved. The final result is given by the point (𝑥𝑖, �̂�𝑖), 

where �̂�𝑖  is called the fitted value at the smoothed point at 𝑥𝑖 (Cleveland 1979).  



Generalized Additive Model, LOWESS and Kernel Regressions 

10 / 22 

3.1.1 The Algorithm  

The algorithm comes prepacked with the statistical package R. This makes a practical application as 

easy as selecting the required data set and one line of code. The art in the application is in the choice 

of the smoothing parameter. The larger the parameter the bigger the neighbourhood of influential 

points and thus the smoother the fitting of the LOWESS curve. The key is to strike the balance 

between minimising variability and not distorting the pattern in the data (Cleveland 1979).  

Cleveland (1979) defines the following: hi = the distance between xk and its qth nearest neighbor,  

𝑥𝑘= the value of the linear polynomial fit, xk= the ith observation and 𝑤𝑘(𝑥𝑖) = 𝑊 (
(𝑥𝑘−𝑥𝑖)

ℎ𝑖
) where W 

is a tricube weight function.  

1. Compute the coefficient estimates �̂�(𝑥𝑖) for each i. The parameters are estimated using a 

polynomial regression of degree 1 of 𝑦𝑘 on 𝑥𝑘 which is fit using by weighted least squares with 

weights 𝑤𝑘(𝑥𝑖); �̂�𝑖 is the fitted value of the regression at 𝑥𝑖.  

2. Estimate outlier robust fitted values by reweighting using Bi-Square Function.  

The Residuals 휀𝑘 = 𝑦𝑖 − �̂�𝑖  

Median Residual 𝑠 = 휀�̃� 

Apply Bi-Square Function 𝐵(𝑥) = {
(1 − 𝑥2)2

0
, 𝑓𝑜𝑟 |𝑥|<1

𝑓𝑜𝑟 |𝑥|≥1
  

Robustness Weights 𝛿𝑘 = 𝐵(휀𝑘/6s) 

3. Estimate the robust fitted values �̂�𝑖 by refitting the polynomial of degree 1 using a weighted least 

squares regression with the combined weights  𝛿𝑖𝑤𝑘(𝑥𝑖) for each observation i.  

4. Repeat steps 2 & 3 for t iterations. 

5. The fitted values can then be plotted at equally spaced points and connected to fit a LOWESS curve 

to the data.  

3.2 Application in R 

The ease of application makes LOWESS a very useful tool especially as it can be applied to complex 

processes without the need for a theoretical model to explain the relationship.  

3.2.1 Function Call Sign 

The code for the LOWESS method comes pre-packaged with the software package R. 
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The R documentation provides the function call sign and descriptions of the key arguments.  

lowess(x, y, f=2/3, iter=3, delta=0.01*diff(range(x))) 

The Arguments 

 x,y vectors giving the coordinates of the points in the scatter plot 

f the size of the smoother bandwidth. This gives the proportion of point in the plot which used 

to estimate the smooth value.  

iter the number of iterations undertaken to make the estimation of the smoothed value 

outlier robust. 

delta data points within delta distance from the previous estimated value are not computed 

in order to speed up computation.  

3.2.2  Example 

I plotted the data and the estimated LOWESS function using various smoothing parameters.  

fm <- lowess(cps71$age, cps71$logwage, f=0.5) 

Figure 3 combines the estimated LOWESS functions estimated using different smoothing parameters.  
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Figure 3: LOWESS Functions estimated in R using the command lowess. 

3.3 Summary 

Locally weighted scatter plot smoothing is a non-parametric method based on the idea of local 

regressions. The algorithm estimates smoothed values without requiring assumptions regarding the 

functional form of the covariates or the distribution of the data generating process. The LOWESS 

curve of the smoothed values, when added to the scatter plot of the original data, proves to be a useful 

visual tool. LOWESS is easily applied in the software package R using the command lowess. 

4. Kernel Regression 

The Kernel Regression method is a purely data driven non-parametric technique to estimate the 

conditional expectation of a random variable. The user is able to generate a highly adaptive and non-

linear function to the data generating process. The method requires neither a theoretical presumption 

of the relationship between the covariates, nor the need for assumptions regarding the underlying 

distribution of the variables. The Kernel Regression method allows the user great freedom to fit the 

model to the data.  

4.1 Kernel Density Estimator 

Kernel Regression are built upon a non-parametric method to estimate the probability density function 

of a random variable, the ‘Kernel Density Estimator’. The method allows the user to estimate a 
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completely unknown probability density function. This makes it extremely flexible in regards to the 

situations it can be applied, as it requires no prior assumptions in regards to the data generating 

process. This flexibility transfers to the Kernel Regression method. 

To estimate the density of the function 𝑓(𝑥), a bandwidth is selected which is the maximum distance 

an observation can deviate from the target data point and still be used in the estimation. The density is 

then estimated using a kernel function to weight observations within the selected bandwidth. An 

example is the uniform kernel function  

𝐾(𝑢) =  
1

2
𝛪(ǀ

𝑥−𝑋𝑖

ℎ
ǀ ≤ 1). 

Where I is an indicator function that returns that returns 1 if the distance between the observation 𝑋𝑖 

and the target 𝑥 is less than the specified bandwidth h. The uniform kernel function assigns a weight of 

0.5 to each observation whose distance from the target point is less then bandwidth. There are many 

different kernel functions which can be used to estimate density.  Figure 3 illustrates some of the 

common kernel functions and their weights for observations. The choice dictates the weighting given 

to observations within the bin. The probability density function 𝑓(𝑥) estimated using the Kernel 

Density estimator 

𝑓(𝑥) =  
1

𝑛
∑ 𝐾(𝑥 − 𝑋𝑖)

𝑛

𝑖=1

 

𝐾(•) =
1

ℎ
𝐾 (

•

ℎ
)  

where 𝐾(•) is the selected kernel function.  

The size of the bandwidth h determines the smoothness of the density estimator. Its choice presents a 

trade-off for the estimator; between bias indicating the bandwidth is too wide and high variance 

indicating the bandwidth is too narrow. Bandwidth selection is very important both for the density 

estimator and Kernel Regression.  
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Figure 3: kernel functions illustrating how observations are weighted differently within the specified bin. 

4.2 Method 

The conditional expectation of the random variable 𝑌 given a random variable X is equal to 𝐸(𝑌ǀ𝑋) =

𝑚(𝑋)  where 𝑚(𝑋) is an unknown function. There are no restrictions on the form of 𝑚(𝑋) (for 

example linear) due to a prior theoretical belief of the relationship between the variables (Härdle et al. 

2004). The goal is to estimate the unknown function using a Kernel Regression 

𝑚(𝑥) = 𝐸(𝑌ǀX = x) = ∫ 𝑦
𝑓(𝑥,𝑦)

𝑓𝑋(𝑥)
𝑑𝑦 =

∫ 𝑦𝑓(𝑥,𝑦)𝑑𝑦

𝑓𝑋(𝑥)
  

where 𝑓𝑋(𝑥) is the marginal probability density function of X and 𝑓(𝑥, 𝑦) is the conditional 

probability density function of Y given X.  

The Kernel Density Estimator (see section 4.1) can be used to estimate both density functions 

𝑓(𝑥) =  
1

𝑛

1

ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1   and 

𝑓(𝑥, 𝑦) =
1

𝑛

1

ℎ2
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
) 𝐾(

𝑦−𝑦𝑖

ℎ
𝑛
𝑖=1 ). 

Rearranging the estimated density functions gives us the Nadaraya-Watson estimator for 𝑚(𝑋), which 

is the weighted sum of all the values of 𝑌 divided by all the kernels 
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�̂�ℎ(𝑥) =
∑ 𝐾ℎ(𝑥−𝑥𝑖

𝑛
𝑖=1 )𝑦𝑖

∑ 𝐾ℎ
𝑛
𝑖=1 (𝑥−𝑥𝑖)

. 

The estimator can be rearranged to illustrate that it is analogue to the local (i.e. within the bandwidth) 

weighted local average of the dependent variable 𝑌 

�̂�ℎ(𝑥) =
1

𝑛
∑ 𝑊ℎ𝑖(𝑥)𝑌𝑖

𝑛
𝑖=1 . 

The estimator is consistent so it converges in probability towards to the population function �̂�ℎ(𝑥)

𝑝
→ 𝑚(𝑥). 

The importance of bandwidth selection was highlighted previously for Kernel Density Estimator (see 

section 4.1). The bandwidth is commonly referred to as the smoothing parameter because it determines 

the degree of smoothness of the estimator �̂�ℎ(𝑥).  To illustrate, Härdle et al. (2004) select the extreme 

example: if ℎ = 0 then the weights are zero so the function is undefined unless 𝑥 = 𝑋𝑖 - this results in 

interpolation of the data. If ℎ = 1 then the weights also equal one for all values of the predicator 

variable X.  The estimator is then a constant function, which assigns the sample mean of Y to X (Härdle 

et al. 2004).  

Selecting the size of the bandwidth represents a trade-off between variance and bias. The larger the 

bandwidth, the larger the bias, while a smaller bandwidth increases the variance. In order to select the 

optimal bandwidth, Härdle et al. (2004) argue it needs to fit two criteria. Firstly it should have desired 

theoretical properties, in other words the estimate should be close as possible to the population 

function. Secondly the method should be easy to apply in practice. The second criterion restricts the 

use of most theoretically desirable bandwidth optimization methods.  

 

There are a number of theoretical measures for optimising the trade off. The mean square error 

𝑀𝑆𝐸(𝑥, ℎ) = 𝐸[{�̂�ℎ(𝑥) − 𝑚(𝑥)}2] is the difference between the squared deviations of the unknown 

function and the estimator at single point. A further downside is that this is only a local measure. The 

Integrated Square Error 𝐼𝑆𝐸{�̂�ℎ} = ∫ {�̂�ℎ(𝑥) − 𝑚(𝑥)}2𝑤(𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
 is a global discrepancy 

measure, however depending on the selected sample the estimates for �̂�ℎ(𝑥) will be different and with 

them, the error. The inclusion of 𝑤(𝑥) a weighting function, reduces the variance in regions of sparse 

data by limiting their influence (Härdle et al. 2004). The Average Square Error 𝐼𝑆𝐸{�̂�ℎ} =

1

𝑛
∑ {�̂�ℎ(𝑋𝑗) − 𝑚(𝑋𝑗)}

2
𝑤(𝑋𝑗)𝑛

𝑗=1  is a discrete approximation of the ISE. The problem with all three 

measures is that they include the unknown function that is being estimated, therefore making its 

application in practice difficult.  

 

There is a solution that allows the user to optimise the size of the bandwidth and that fits both criteria. 

The idea is to replace the unknown function 𝑚(𝑥) with the observations of Y, however the problem is 
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that Y is used to predict �̂�ℎ(𝑥).  Cross validation presents a simply solution by utilising a method 

called leave one out estimation (Härdle et al. 2004) 

�̂�ℎ,−1(𝑋𝑖) =
∑ 𝐾ℎ(𝑋𝑖−𝑋𝑗

𝑛
𝑖≠𝑗 )𝑌𝑖

∑ 𝐾ℎ
𝑛
𝑖≠𝑗 (𝑋𝑖−𝑋𝑗)

. 

The 𝑖𝑡ℎ observation is not used in the estimation of �̂�ℎ,−𝑖 which replaces �̂�ℎ. The cross validation 

function is then given by  

𝐶𝑉(ℎ) =
1

𝑛
∑ {𝑌𝑖 − �̂�ℎ,−𝑖(𝑋𝑖)}

2
𝑤(𝑋𝑖)𝑛

𝑖=1 . 

The bandwidth h should be selected to minimise the cross validation function; this is equivalent to 

minimising the average square error. 

4.2.1 Multivariate Datasets 

Kernel Regressions can be applied to multivariate datasets; however one particular problem needs to 

be accounted for. This is the curse of dimensionality, due to the fact that each added dimension 

increases the number of bins by a square factor. As the number of bins increases, so does the 

likelihood that they will be sparsely populated. 

4.3 Application in R 

There are two options to implement Kernel Regression in R. The Kernel Regression Smoother 

ksmooth comes pre-packaged with the software and will compute the Nadaraya-Watson estimator. 

To optimize the bandwidth via the cross validation method requires the installation of the package 

Summary Information sm. The alternative requires the installation of the package Non-parametric 

Kernel Smoothing Methods for Mixed Data Types np. The package np allows the user to combine 

various data types. It automatically selects the bandwidth. I will illustrate the application of both 

methods.   
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4.3.1 Function Call Sign 

library(sm) 

cv <- hcv(x, y, hstart=NA, hend=NA) 

x vector of covariate values for the non-parametric regression.  

y vector response variable for the non-parametric regression.  

hstart the small value of the grid points to be used for the initial search.  

hend the largest value for the grid points to be used for the initial search.  

The Kernel Regression smoother 

ksmooth(x, y, kernel = “normal”, bandwidth=cv) 

x input values x.  

y input values y.  

kernel the kernel function to be used.  

Bandwidth the bandwidth set to the optimal level given by cross validation.  

library(np) 

npreg(x, y) 

x input values x.  

y input values y.  

4.3.2 Example  

The Kernel Regression is then estimated using the code. 

ksmooth(age, logwage, kernel=“normal”, bandwidth=0.5) 

I varied the size of the bandwidth selected to illustrate impact on the estimated function. It is easy to 

see the impact on the estimate function of reducing the bandwidth. To select the optimal bandwidth, 

select the value that minimizes the cross validation function. The optimal bandwidth is approximately 

equal 3.27.  

cv <- hcv(age, logwage, display=“lines”) 
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cv 

[1] 3.271217 

ksmooth(age, logwage, kernel=“normal”, bandwidth=cv) 

Figure 4 plots the Nadaraya-Watson estimator for various bandwidths including the cross validation 

optimal measure.   

 

Figure 4: Kernel Regression estimated in R using the Kernel Smoother command ksmooth. 

The code for the estimation of the Kernel Regression function using the Non-parametric package np.  

k <- npreg(age, logwage)  

plot(k,plot.errors.methods=“asymptotic”,plot.error.style= 

“band”, ylim=c(11,15.5)) 

points(age, logwage, cex=0.25) 

Figure 5 plots the results of the non-parametric regression. The results are very similar to those 

attending using the cross validation optimal bandwidth.   
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Figure 5: Kernel Regression estimated in R using the non-parametric package npreg with the asymptotic variability bounds. 

4.4 Summary 

Kernel Regressions allow the user to estimate the 𝐸(𝑌ǀ𝑋) = 𝑚(𝑋)  where 𝑚(𝑋) is an unknown 

function. The method is based on the idea of estimating the probability density functions using the 

Kernel Density Estimator. The method requires no theoretical presumption of the relationship between 

the covariates, nor the need for assumptions regarding the underlying distribution of the variables. To 

obtain a good estimation, bandwidth selection is important. The selection presents a trade-off between 

increasing bias and increasing variance. The optimal bandwidth is obtained by minimising the cross 

validation function. Kernel Regressions can be easily applied in the software package R using the 

commands ksmooth or npreg. 
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5. Comparison 

Table 1: Method Comparison 

Generalized Additive Model LOWESS Kernel Regression 

1. Extends the linear model 

by allowing parametric, 

semi-parametric and non-

parametric covariates 

therefore the user can 

account for non-linear 

relationships between 

variables. 

 

1. A non-parametric data 

driven method of fitting a 

smoothed function to the 

data generating process. 

 

 

 

1. A non-parametric data 

driven method of 

estimating the conditional 

expectation of a random 

variable. 

 

2. Requires pre-specified 

functional form. However 

the linear model, 

individual covariates can 

therefore still be 

interpreted in a ceteris 

paribus manner and 

conventional inference can 

be undertaken.  

 

2. No assumption required 

regarding the relationship 

between the covariates, 

their distributions or the 

functional form of the 

model. 

 

2. No assumption required 

regarding the relationship 

between the covariates, 

their distributions or the 

functional form of the 

model. 

 

3. Applies a smoothing 

method to estimate the 

functions that makes up 

the individual components 

of the model. 

3. Applies a local weighted 

regression to determine the 

weight of each observation 

within the bandwidth in 

estimating the fitted value.   

 

3. Applies a kernel function 

to data within a pre-

determined bandwidth to 

estimate the unknown 

marginal and conditional 

probability density 

functions required to 

compute the conditional 

expectation. 

 

 

6. Conclusion 

This paper gives an introduction to three methods for evaluating non-linear and non-parametric data 

generating processes. The linear regression model is an excellent tool for data analysis, however it 

requires restrictive assumptions about the data generating process to be successfully estimated. The 

concepts I introduced in this paper allow the user greater flexibility to successfully estimate models 

based purely on information contained within the data. The Generalized Additive Model is an 

extension of the generalized linear model that incorporates smoothing to estimate the impact of non-

linear covariates. Locally Weighted Scatter Plot Smoothing fits a smooth function by applying a local 

weighted regression to data points within a user-selected bandwidth. Kernel Regression estimates the 

conditional expectation via the estimation of the marginal and conditional probability density 

functions within a specified bandwidth using a kernel function. The paper introduces and then 
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carefully explains the idea and mathematical formulas. I illustrate how to implement each method in 

the software package R by listing the call signs and explaining the arguments. Finally I apply each 

method to the non-linear dataset cps71.   
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