
information systems research

Data Mining in R
– SEMINAR WINTER SEMESTER 2015/2016 –

Introduction to quantitative modeling with
the R package quantmod

– SEMINAR PAPER –

Submitted by:

Marius Jaeger

Advisor:
Prof. Dr. Dirk Neumann

Contents

1 Introduction 1

2 What quantmod is and what it is not 1

3 Quantitative trading and modeling 1

4 Getting started 2
4.1 Installing quantmod . 2

4.2 Dependent packages . 2

5 Using quantmod 3
5.1 Getting data . 3

5.2 Charting . 4

5.3 Handling data . 9

5.4 Adding own indicators and advanced charting . 10

5.5 Building models . 12

6 Conclusion 13

A References i

B List of Figures ii

C List of Tables iii

1 Introduction 1

1 Introduction

The R package quantmod is written by Jeffrey A. Ryan, designed to assist traders in quantitative

modeling. For traders, losing time often means losing money. Therefore, quantmod wraps up the

capabilities of several statistics, charting and data handling packages to make testing, developing

and use of quantitative trading models easier and faster. This enables traders to design their

own models and to test them with data from different sources. Traders can increase their profits

getting better predicting future trends on markets and their effects on different assets. Hopefully

this improves the efficiency of the financial markets and thereby increases the resource allocation

of the whole economy.

In this seminar paper, we will introduce into the usage of quantmod and the variety of different

capabilities it provides. The scheme of the introduction partly follows the one on [8] and the

information provided by [9]. In addition an introduction to quantitative trading will be given. R

code examples are framed. All explanations are given for the command line interface of R.

2 What quantmod is and what it is not

In the depth of the CRAN (Comprehensive R Archive Network), traders can always find different

kinds of charting, testing and other statistics packages which can be used for quantitative trading.

But traders had to puzzle together their own trading tools. Of course this is an annoying and

frustrating work. Especially the data handling and processing while using different R packages

might cause problems. As a remedy, quantmod is designed and written to solve most of those

problems and to provide a package that allows to set up, test and deploy trading models and to

process financial data easier and faster than before. The package is designed to assist traders

in developing, testing and implementing quantitative trading models. This does not mean, that

quantmod is another statistics package but rather a developing package. Therefore, quantmod

uses no own math functions "–" it uses the ones provided by several other packages, which we

will go into later on. In summary what quantmod provides, are functions designed to rapidly set

up and test new models by wrapping and mixing up the capabilities of other R packages, which

already existed [8].

3 Quantitative trading and modeling

One mean of quantitative trading can be trading of hundreds of thousands of stocks or securities,

which is mostly done by big investors like financial institutions or funds. However it can also be

seen as individual trading by following the analysis of financial data and mathematical models.

Therefore, the quantitative trader always needs quantitative modeling, which contains cleaning,

handling and visualization of data, analyzing, fitting and testing of trading models. For example,

analyzing price and volume of a stock are some of the most common information, which traders

use to identify trading opportunities [6].

4 Getting started 2

4 Getting started

Starting quantmod always starts with installing quantmod and its dependent packages from the

CRAN repository.

4.1 Installing quantmod

Installing quantmod is as easy as installing any other R package. Just type [7]:

i n s t a l l . packages (" quantmod " , dependencies=TRUE)

This will automatically install quantmod and all dependent packages like "xts", "zoo" and "TTR"

from CRAN. If you want to know, if quantmod is already installed, find out by typing:

" quantmod " %in% i n s t a l l e d . packages ()
TRUE

The return will be boolean. This might be useful, if you like to write some kind of automatized

script running on different computers. If you are using quantmod on different R applications, it

might be necessary to reload the package by calling:

r equ i r e (" quantmod ")

This might also be useful, if you are running R scripts from a .batch file or some GUI. Quantmod,

like any other R package, can also be installed from an .zip file, which is also available at CRAN.

To install from a .zip file, type:

i n s t a l l . packages (choose . f i l e s () , repos=NULL)

choose.files() will open a windows file dialog to choose files. Choosing multiple files will not

work, because install.packages() is not able to handle a list of files.

4.2 Dependent packages

Quantmod itself just provides the data base connection and a few other functions. For this reason,

quantmod requires several dependent packages [Figure 1]. One of them is the "xts"-package,

which provides functions for handling time-based series [12]. Moreover, the functions from the

"zoo"-package are used for handling irregular and regular time-based series [13]. We will refer to

this later on. Afterwards, we will create technical trading rules by using the "TTR"-package [10].

This package provides several kinds of modeling and fitting functions, which are even useful in

non-financial context.

In the return of the code given above, one can see, which dependent packages are loaded by

quantmod. [Figure 1]

5 Using quantmod 3

Figure 1: Quantmod and its dependent packages.

5 Using quantmod

After succesfully installing quantmod to your R, you are ready to start working. Getting data and

learning how to handle it is essential.Afterwards, charting or modeling can follow, respectively.

5.1 Getting data

Using quantmod mostly starts with getting data from any of the data sources supported by

quantmod. Supported data sources are [9]:

• yahoo as OHLC data

• google as OHLC data

• MySQL for own data

• FRED as economic series

• CSV files for your own or downloaded data

• binary R data types: .RData or .rda

The CSV-file import is difficult, because of different separators and several problems, for

example caused by row.number and col.number.

Figure 2: Data loading scheme

In quantmod, all these data sources can be used with only one function getSymbols(), which

makes getting data easy and fast [Figure 2]. The function calls are as follows [7]:

5 Using quantmod 4

getSymbols ("̂ GDAXI " , s r c=" yahoo ") # loads DAX data from GOOGLE f inance
getSymbols ("MYAGM2EZM196N" , s r c="FRED") # loads data of M3 in the euro ←↩

area from FRED (Federa l Reserve of St . Louis)
getSymbols ("VLKAY " , s r c=" google ") # loads the course of Volkswagen from ←↩

Google f inance
getSymbols (" XPT/EUR" , s r c=" oanda ") # loads the course of platinum in ←↩

euro

getSymbols() creates an object in your workspace (can be changed by specifications), of the

type mentioned before and returns the name of the object. Therefore, it might be useful to

directly save the name in a R variable like:

d1 <− as . name(getSymbols ("̂ GDAXI " , s r c=" yahoo "))

This makes it easier to use the data later. But be careful - this does not work with all the quantmod

functions.

It is also possible and even useful to specify lookup parameters for later sessions by using

the function saveSymbolLookup(). In this case the symbol lookup is saved to a file named

"prevLookup.rda" into your working working directory.

setSymbolLookup (VLKAY= ' google ' , ĜDAXI= ' yahoo ')
setSymbolLookup (MYAGM2EZM196N= 'FRED ')
setSymbolLookup (XPTEUR=l i s t (name=" XPT/EUR" , s r c=" oanda "))
saveSymbolLookup (f i l e=" prevLookup . rda ")

5

getSymbols (c ("VLKAY " , "̂ GDAX" , "MYAGM2EZM196N" , "XPTEUR"))

This returns exactly the same as the code given before [7]. But in future sessions, the lookup

can be reused by calling:

loadSymbolLookup (f i l e=" prevLookup . rda ")
getSymbols (c ("VLKAY " , "̂ GDAX" , "MYAGM2EZM196N" , "XPTEUR"))

The function loadSymbolLookup() only loads the specifications set before by calling setSymbol-

Lookup() back into your workspace. The data itself is not saved on your computer and will be

downloaded again from the internet or any source specified before. It is necessary to save the

whole workspace or single data sets, if you want to avoid downloading it again.

5.2 Charting

Now we got some idea of how data can be loaded into your R environment. Then it is time

to do some charting, one of quantmod’s specialties. Especially for charting quantmod provides

functions, which are really easy to handle and which create fancy graphs without hard work,

compared to less automatized charting and plotting packages.

Let’s start with getting some data, for example the stock exchange price of the Volkswagen

AG from YAHOO-finance:

5 Using quantmod 5

VW <−as . name(getSymbols ("VOW3.DE" , s r c=" yahoo "))

And plot a fancy bar chart of the data:

barChart (VW, subse t = ' 2015−06::2016−01 ')

To make the single bars visible, it is necessary to restrict the plotted data to the subset of last

half-year’s stock exchange prices [Figure 3].

Like mentioned before, data loaded from Yahoo Finance is of type OHLC and volume series.

100

120

140

160

180

200

220

as.name(VW) [2015−06−01/2016−01−07]

Last 115

Volume (millions):

2,420,400

0
2
4
6
8

10
12
14

Jun 01 2015 Aug 03 2015 Okt 01 2015 Dez 01 2015

Figure 3: Bar chart of VW’s stock prices and traded volumes during 2nd half of 2015.

5 Using quantmod 6

OHLC means, that every trading day is a vector of four values[5][Figure 5]:

• The opening price of the stock

• The closing price

• The maximum price of the day

• The minimum price of the day

Sometimes the adjusted closing price is also included. If there is also volume series added, there

is another column containing the daily traded volume.

In a bar chart there is plotted one bar for every trading day. The highest point of the bar

shows the maximum and the lowest point shows the minimum of the day’s stock price. The tick at

the left shows the starting, the tick at the right shows the closing price. Red bars indicate falling

prices, green ones indicate rising prices. Other chart styles available are line chart, candlestick

chart, and matchstick chart [2, 9].

Now, after plotting our first chart, let’s go on and add our first indicator. As most indicators are

provided by the TTR package, it might be necessary to load the package by calling:

r equ i r e ("TTR")

The indicator we are going to use for this example is the Average Directional Movement Index

(ADX), which compares daily maxima and minima over a long term to measure the strength of

trends [1]. The standard parameters can be looked up at [9]. The function call addADX() plots

the indicator underneath the traded volume plot. To get more sophisticated, we now change our

plot from a bar to a matchstick chart [Figure 4] and add some Bollinger Bands by calling:

getSymbols ("VOW3.DE" , s r c=" yahoo ")
c h a r t S e r i e s (VOW3. DE, type = " matchs t i ck " , subse t= ' 2015−06::2016−01 ' , ←↩

TA=c (addVo () , addADX()))
addBBands ()

This time we use the chartSeries() function, which provides much more options. As seen, the

addition of the indicators like addBBands() can be done as an argument to the chartSeries()

function or later by calling the function.

The Bollinger Bands show a 20 periods moving average and a band of two-times standard

deviation. This gives a hint whether prices are relatively high or low, compared to previous trades.

As arguments to the function, number of periods and bandwidth can be changed [3]. Many other

indicators are accessible as shown in the table later.

5 Using quantmod 7

100

120

140

160

180

200

220

VOW3.DE [2015−06−01/2016−01−08]

Last 115.1

Bollinger Bands (20,2) [Upper/Lower]: 141.594/115.906

Volume (millions):

1,645,400

0
2
4
6
8

10
12
14

20

30

40

50

60

Jun 01 2015 Jul 01 2015 Aug 03 2015 Sep 01 2015 Okt 01 2015 Nov 02 2015 Dez 01 2015 Jan 01 2016

Figure 4: Matchstick chart of BBands and ADX.

Figure 5: Part of the VOW3.DE OHLC data.

5 Using quantmod 8

Function Indicator

addBBand() Bollinger bands

addADX() Average Directional Movement Index

addATR() Average True Range

addCCI() Commodity Channel Index

addCMF() Chaiken Money Flow

addCMO() Chande Momentum Oscillator

addDEMA() Double Exponential Moving Average

addDPO() Detrended Price Oscillator

addEMA() Exponential Moving Average

addEnvelope() Price Envelope

addEVWMA() Exponential Volume Weighted Moving Average

addExpiry() Options and Futures Expiration

addMACD() Moving Average Convergence Divergence

addMomentum() Momentum

addROC() Rate of Change

addRSI() Relative Strength Indicator

addSAR() Parabolic Stop and

addSMA() Simple Moving Average

addSMI() Stochastic Momentum Index

addTRIX() Triple Smoothed Exponential Oscillator

addVo() Volume

addWMA() Weighted Moving Average

addWPR() Williams Percent R

addZLEMA() ZLEMA

Table 1: All indicators usable in quantmod [4].

5 Using quantmod 9

5.3 Handling data

As learned before, much of the data we have to handle in quantitative trading, is of type OHLC.

OHLC is an abbreviation for the column names of the data Open, High, Low, Close [5]. If you are

not sure about the type of the data you are using, there are some useful functions like is.OHLC(),

has.OHLC(), has.Op(), has.Cl(), has.Hi(), has.Lo(), has.Vo(), has.Ad().

[9]. These functions do what they say, and their returns are boolean. For example:

i s .OHLC(VOW3.DE)
TRUE

It might also be useful to extract columns or lines. This can be done by using the functions Op(),

Cl(), Hi(), Lo() to extract columns and seriesHi() and seriesLo() to extract the lines containing

the highest Hi-value of the series respective the line with the lowest Lo-value. For example

Hi (VOW3.DE)

extracts all the Hi-values of the series.

But what will happen, if we combine the functions we learned before like in the following?

OpOp(VOW3.DE)

They will return a series containing the percentage change from one day’s opening value to the

next day’s opening value [5]. It is also possible to use the functions provided by the xts package

to transform time-based series. These functions allow fast generation of time-based subsets like

l a s t (VOW3. DE, '−5 days ')

, which gets you the last five days of the series.

Other transformations provided are Lag(), which lags one period or more, if specified. For

example, calling

Lag (VOW3.DE[0:10] ,3)

lags 3 periods. Obviously the Next() function does exactly the opposite. Moreover, the Delt()

function returns the percentage change in whatever and in every period you want. For example

abs (Del t (Lo (VOW3.DE) , Hi (VOW3.DE) , c (0 ,6)))

returns the daily volatility and the change between one day’s minimum and the maximum six

days after, which actually says nothing.

While working with time-based series, it might also be useful to change the periodicity of your

series. Whether for reasons of efficiency in computing or clear representation, xts has what you

need. The functions to.monthly(), to.weekly() and, to.daily() do what they say and what you

mostly need. For example the to.weekly() function transforms the series to a data set containing

only fridays. The to.monthly() function returns a list containing only the first day of each month.

For the more ambitioned ones, the function to.period() allows to change the period in every way

you like (for further information look [12]). If you like to know the periodicity of your data, use

5 Using quantmod 10

periodicity() [5].

But transforming data does not already allow to develop trading models or to calculate expected

weekly returns. To get such information, we need to apply functions by period. This is what the

function apply.weekly() does. It allows you to apply your own functions to any time period that’s

possible with your data. For example:

per iod . apply (VOW3.DE , endpoints (VOW3.DE ,on= ' months ') , FUN=func t ion (x) { ←↩
max(Hi (x)) }) [' 2015 ']

apply . monthly (VOW3. DE, FUN=func t ion (x) { min(Hi (x)) }) [' 2015 ']

These two calls do the same, but the first one using the endpoints() function to generate the

period, is more general. Now we can write our own function to calculate the daily returns

of an invest or, to make it easier, just use one of the implemented functions dailyReturn(),

weeklyReturn(), or monthlyReturn() or all of them at once:

a l l R e t u r n s (VOW3.DE) [' 2015−06::2016 ']

Looking at the output of the example, one can see, that Volkswagen had a bad year. For further

informations on data handling and time-based series look [5, 12].

5.4 Adding own indicators and advanced charting

Now, After learning how to handle data, the ambitioned trader might know his own trading

signals, which are not implemented in quantmod or TTR. Therefore, TTR provides the opportunity

to define your own indicators and to add them to your charts, by using the addTA() respective

the newTA() function. For example, we already charted some data like the SAP stock price as

OHLC data. Afterwards, we added the Williams Percent R indicator [11] to the chart [Figure 6].

getSymbols (' SAP ')
c h a r t S e r i e s (SAP , type = " matchs t i ck " , subse t = ' 2015−06::2016 ' , TA = NULL)
addWPR()

If you need your own indicator and additionally need to change the theme of your chart later

on, use for example this call [Figure 7]:

addTA(abs (Del t (Lo (SAP) , Hi (SAP) , 0)) , co l=" blue " , type= ' h ')
reChart (SAP , type=" matchs t i ck " , theme=" white " , subse t= ' 2015−06::2016 ')

For further information on themes, look chartTheme() at [9]. The reChart() function is really

useful, because it changes the whole chart settings, like subset or style without displacing all your

indicators.

But what if we need a simple moving average and accidentally added the exponential moving

average? Just drop it by using this call:

addEMA()
dropTA('EMA ')
addSMA()

If you like to export your charts to pdf, this piece of code might also be useful:

5 Using quantmod 11

65

70

75

80

SAP [2015−06−01/2016−01−08]

Last 76.900002

Williams %R (14):
0.810

0.0

0.2

0.4

0.6

0.8

1.0

Jun 01 2015 Aug 03 2015 Okt 01 2015 Dez 01 2015 Jan 08 2016

Figure 6: SAP chart with WPR added.

pdf (choose . f i l e s ())
c h a r t S e r i e s (SAP , type = " matchs t i ck " , subse t = ' 2015−06::2016 ' , TA = NULL)
addBBands ()
dev . o f f ()

5 Using quantmod 12

65

70

75

80

SAP [2015−06−01/2016−01−08]

Last 76.900002

Williams %R (14):
0.810

0.0

0.2

0.4

0.6

0.8

1.0

abs(Delt(Lo(SAP), Hi(SAP), 0)) :

0.021

0.02

0.04

0.06

0.08

Jun 01 2015 Jul 01 2015 Aug 03 2015 Sep 01 2015 Okt 01 2015 Nov 02 2015 Dez 01 2015 Jan 04 2016

Figure 7: SAP chart with WPR added and volatility in white.

5.5 Building models

Quantmod allows to build and test models. Though the development of this functionality stopped,

there is just one small function for this issue. But for completeness, one example will be given

here. The first function you need, is the specifyModel() function, which does what it says:

myMod<−spec i fyModel (OpLo(SAP) ~ Next (Cl (SAP)))

We specified the model myMod implying some correlations in the OHLC data. This is our new

trading rule, which we are going to test now. First, we have to fit it by using the function

buildModel():

mybuild<−buildModel (myMod, ←↩
method=" r p a r t " , t r a i n i n g . per=c (' 2015−06−01 ' , ' 2016−01−01 '))

training.per sets the time subset ’from’, ’to’, method sets the ’fitting method’; this time "rpart"

from the rpart package was chosen.

After fitting, we can use the tradeModel() function to compute the estimated returns trading our

rule over the whole data set.

The call

tradeModel (mybuild)

returns risk measures and estimated profits, which seem very low, while the risk is very high

for our rule. Unfortunately, many of the modeling functions planned at the beginning, never

6 Conclusion 13

got developed. As a result, quantmod is somehow limited to charting and data handling, while

modeling has few functionalities and is badly documented [9].

6 Conclusion

In conclusion, one can say, that quantmod is a powerful R package if you want to make your

quantitative modeling faster and easier. It does not and does not try to replace other R packages

like portfolio. One of its strengths is the easy getSymbols() function, loading several kinds of

data from several sources using just one function. Furthermore, it is easy to get into quantmod’s

functionalities, though it provides more sophisticated ones, which could not be part of this short

paper (take a look at [9]). Sadly many formerly planned functions never got implemented to

quantmod. But it is also in its current condition a useful package, which I can recommend to

every one who is interested in data analysis, particularly in stock charting.

A References

[1] Average dircetional movement index. https : / / en . wikipedia . org / wiki / Average _

directional_movement_index. Accessed: 2016-01-09.

[2] Bar chart definition. http://www.investopedia.com/terms/b/barchart.asp. Accessed:

2016-01-09.

[3] Bollinger Bands. https://en.wikipedia.org/wiki/Bollinger_Bands. Accessed: 2016-

01-09.

[4] charting examples. http://www.quantmod.com/examples/charting/. Accessed: 2016-

01-09.

[5] data handling examples. http://www.quantmod.com/examples/data/. Accessed: 2016-

01-09.

[6] definition of quantitative trading. http://www.investopedia.com/terms/q/quantitative-

trading.asp. Accessed: 2016-01-10.

[7] quantmod introduction. http://www.quantmod.com/examples/intro/. Accessed: 2016-

01-03.

[8] quantmod.com. http://www.quantmod.com. Accessed: 2016-01-09.

[9] quantmod.pdf. http://www.quantmod.com/documentation/quantmod.pdf. Accessed:

2015-12-23.

[10] TTR.pdf. https://cran.r- project.org/web/packages/TTR/TTR.pdf. Accessed:

2016-01-09.

[11] Williams Percent R. https : / / en . wikipedia . org / wiki / Williams _ %25R. Accessed:

2016-01-06.

[12] xts.pdf. https://cran.r-project.org/web/packages/xts/xts.pdf. Accessed: 2016-

01-08.

[13] zoo.pdf. https://cran.r-project.org/web/packages/zoo/zoo.pdf. Accessed: 2016-

01-09.

https://en.wikipedia.org/wiki/Average_directional_movement_index
https://en.wikipedia.org/wiki/Average_directional_movement_index
http://www.investopedia.com/terms/b/barchart.asp
https://en.wikipedia.org/wiki/Bollinger_Bands
http://www.quantmod.com/examples/charting/
http://www.quantmod.com/examples/data/
http://www.investopedia.com/terms/q/quantitative-trading.asp
http://www.investopedia.com/terms/q/quantitative-trading.asp
http://www.quantmod.com/examples/intro/
http://www.quantmod.com
http://www.quantmod.com/documentation/quantmod.pdf
https://cran.r-project.org/web/packages/TTR/TTR.pdf
https://en.wikipedia.org/wiki/Williams_%25R
https://cran.r-project.org/web/packages/xts/xts.pdf
https://cran.r-project.org/web/packages/zoo/zoo.pdf

B List of Figures

1 Quantmod and its dependent packages. 3

2 Data loading scheme . 3

3 Bar chart of VW’s stock prices and traded volumes during 2nd half of 2015. . . . 5

4 Matchstick chart of BBands and ADX. 7

5 Part of the VOW3.DE OHLC data. 7

6 SAP chart with WPR added. 11

7 SAP chart with WPR added and volatility in white. 12

C List of Tables

1 All indicators usable in quantmod [4]. 8

	Contents
	1 Introduction
	2 What quantmod is and what it is not
	3 Quantitative trading and modeling
	4 Getting started
	4.1 Installing quantmod
	4.2 Dependent packages

	5 Using quantmod
	5.1 Getting data
	5.2 Charting
	5.3 Handling data
	5.4 Adding own indicators and advanced charting
	5.5 Building models

	6 Conclusion
	A References
	B List of Figures
	C List of Tables

