
information systems research

Advanced Analytics in R

– SEMINAR WINTER SEMESTER 2014/2015 –

Restricted Boltzmann Machine

– SEMINAR PAPER –

Submitted by:

Nicole Ludwig

Advisor:
Prof. Dr. Dirk Neumann

Contents

1 Introduction 1

2 Energy-Based Models 1
2.1 Energy Function . 2

2.2 Using Energies to Define Probabilities . 3

2.3 Boltzmann Machine Learning Algorithm . 4

3 Restricted Boltzmann Machine 5
3.1 Learning the Weights of an RBM . 5

3.2 Contrastive Divergence Learning . 6

3.3 Semi-Restricted Boltzmann Machines . 7

4 Deep Belief Networks 8

5 Application of an RBM in R 10

6 Conclusion 12

A References i

B List of Figures ii

1 Introduction 1

1 Introduction

Artificial Intelligence tries to let computers recognize patterns better by imitating the way the

human brain works. One of the first models that succeeded in this task, are neural networks,

which are emulating the synaptic connections in the brain by a network with visible and hidden

layers. The main drawback of those networks is that they are trained using back-propagation

and hence need labelled data as input. Although they also require labels, the better performing

kernel-based Support Vector machines took over the tasks of neural networks. But researchers

around Geoffrey Hinton developed a model called a Boltzmann machine that, if restricted in its

structure, can learn features efficiently. And if several of those machines are stacked upon each

other, we can construct deep networks. Those deep networks, also called deep belief networks,

have now revived the interest in models which are related to classical neural networks and a

field called deep learning. The idea of deep learning stems from the believe that the neocortex

of the brain works in hierarchical levels. Those levels, which are associated with an increase in

abstraction, are represented by the depth of the network.

This paper aims to introduce to restricted Boltzmann machines, the advancement of neural

networks which are most prominently used for deep learning. Section 2 will introduce energy-

based models and the Boltzmann machine. In Section 3, we focus on restricted Boltzmann

machines and their learning algorithm. Section 4 gives a short introduction to training multiple

layers of restricted Boltzmann machines in deep networks. Finally, in Section 5, we use the

MNIST handwritten digit database to show how an RBM can be implemented in the statistical

software R.

2 Energy-Based Models

Energy-based models are networks that are regulated by an energy function. They do not

generate data causally, instead everything is defined in terms of energies of joint configurations

of the parameters. The learning process in these models thus includes changing the energies

in such a way, that the units minimize the global energy function. We consider a network that

is similar to a Hopfield network called the Boltzmann machine and shown in Figure 1. In a

Hopfield network, the synaptic weights are symmetric (Murphy 2012), which does not make

sense biologically but enables us to define an energy function and analyze the network with

statistical mechanics methods. The Boltzmann machine differs then from the Hopfield network

in the way that it uses stochastic instead of binary decision units. The machine is structured

in visible units V = {v1, . . . ,vn} and hidden units H = {h1, . . . ,hk} which are connected by a

bidirectional symmetric weight w.

We will first in Section 2.1 introduce to the basic concept of an energy function from statistical

physics and then apply this concept to our machine learning task in Section 2.2.

2 Energy-Based Models 2

j

i

Hidden units

Visible units

wij

Figure 1: A Boltzmann Machine with a symmetric connection weight w between the visi-
ble and hidden units.

2.1 Energy Function

Central to the energy-based models is the energy function. This function determines the probabil-

ity of the network adopting particular states (Hinton 2007). The stochastic units in those models

try to enter low energy states and avoid high energy states. We are hence looking for a global

energy minimum, where the global energy E is given by the sum of all local contributors

E =−∑
i

sibi−∑
i< j

sis jwi j, (1)

where b is a bias term, wi j is the symmetric connection weight between units i and j and si is 1 if

unit i is on and 0 otherwise. To efficiently get to a low energy state, we can in such a system, find

the minimum by calculating the energy gaps. These are defined as the difference in the global

energy between the unit i being on or off, i. e.

∆Ei = E(si = 0)−E(si = 1) = bi +∑
j

s jwi j. (2)

We can now go through the network and calculate the energy gap for each unit to sequentially

make a decision for each unit to be on or off. The problem of this simple learning algorithm

is that it might not find the global minimum because it can get stuck in a local minimum. We

can prevent the machine to enter those spurious minima by introducing noise in the system. We

control this noise with a temperature. Ackley et al. (1985) adopted an algorithm by Metropolis

which gives the probability as

p(si = 1) =
1

1+ e−∆Ei/T , (3)

where the Energy gap between unit i being on or off is ∆Ei and T is a temperature parameter.

Similar to particles in a physical system, the Boltzmann machine will eventually reach thermal
equilibrium. Thermal equilibrium means the probability distribution over configurations has

settled down to its stationary distribution, which is not necessarily equivalent to the system

settling to its lowest energy configuration. When reaching thermal equilibrium, the global

configuration is then proportional to its energy by the Boltzmann distribution p(v,h) ∝ e−E(v,h)

(Ackley et al. 1985; Bengio 2009). This distribution has the nice characteristics that it is not

2 Energy-Based Models 3

dependent on the path it used to reach the equilibrium and that at a temperature of 1 “the
difference in the log probabilities of two global states is just their energy difference” (Ackley et al.

1985). While low temperature favour low energy states, we reach the equilibrium faster at high

temperature. For the resulting analysis we consider binary stochastic units with a temperature of

T = 1.

2.2 Using Energies to Define Probabilities

We can now define the probabilities in our Boltzmann machine through the energies in the system.

These energies are related to their probabilities in two ways, which are consistent with each

other:

(1) we can define p(v,h) ∝ e−E(v,h),

(2) we can also define the probability to be the probability of finding the network in that joint

configuration after we have updated all of the stochastic binary units many times, thus the

stationary distribution.

The energy of a joint configuration, when the stochastic units are divided into a set of visible

units V and a set of hidden units H is according to Equation (1) given by

−E(v,h) = ∑
vi∈V

vibi + ∑
hk∈H

hkbk +∑
i< j

viv jwi j +∑
i,k

vihkwik +∑
k<l

hkhlwkl, (4)

where bi is the bias term of unit i, wik is the weight between visible unit i and hidden unit k, wkl is

the weight between two hidden units and i < j indices every non-identical part of i and j once.

The probability of this joint configuration over both visible and hidden units now depends on the

energy of that joint configuration compared with the energy of all other joint configuration. We

thus normalize the Energy by all possible configurations over the visible and hidden units. This

normalization term is often referred to as the partition function which is denoted by Z

p(v,h) =
e−E(v,h)

∑e−E(u,g)
=

e−E(v,h)

Z
. (5)

The probability of a configuration over just the visible units is the sum of the probability of all

joint configurations that contain it. And as we cannot observe the hidden variables, we consider

the marginal

p(v) =
∑
h

e−E(v,h)

Z
. (6)

Inspired by physics we can introduce free energies, which are defined as (Bengio 2009)

p(v) =
e−FreeEnergy(v)

∑
v

e−FreeEnergy(v) , (7)

with

FreeEnergy(v) =− log∑
h

e−E(v,h). (8)

In the context of this paper, the nominator of the term p(v) can be interpreted as the so-called

positive phase. It decreases the energy of the terms that are large, finds those terms by settling to

2 Energy-Based Models 4

thermal equilibrium, with v clamped to the observed input vector. We therefore find an h that

gives a low energy with v, thus p(h|x) is sampled. The denominator gives the negative phase. It is

doing the same as the positive phase for the partition function. Thus it finds global configurations

of visible and hidden states p(v,h) that are large contributors to the partition function and give a

low energy. Having found them we raise their energies so they can contribute less overall. As we

cannot compute the partition function analytically if we have many hidden units because the

number of terms to be considered rises exponentially, we use Markov Chain Monte Carlo (MCMC)

methods (Bengio 2009), more specifically alternating Gibbs sampling (Hinton 2002), to sample

from the model. We start from a random global configuration and update the states based on

their energy gaps.

2.3 Boltzmann Machine Learning Algorithm

As explained above, we want to find the minimum global energy through adjustment of the

weights. To successfully learn these weights in a Boltzmann machine a simple but slow learning

algorithm to change the energies through a gradient method was introduced by Ackley et al.

(1985). Even if we clamp a data vector to the units, the system finds the minimum global energy

given that data vector (Ackley et al. 1985). It is an unsupervised learning algorithm that has a

data vector without labels as input. The goal of this learning process is to maximize the sum

of the log-probabilities that the Boltzmann machine assigns to the training vector. The most

important fact is that we can explain the knowledge one weight has to have by differences in

correlations. Thus, the derivative of the log probability of one training vector v under the model,

is the expected value of the product of how often i and j are on together in thermal equilibrium

with a data vector v clamped on the visible units minus the same expected value without v being

clamped on the visible units

∂ log p(v)
∂wi j

= 〈sis j〉v−〈sis j〉model, (9)

where 〈〉 denotes the expected correlation under the training vector v or the model, respectively.

The derivation of the above equation can be found in (Carreira-Perpinan and Hinton 2005). The

weight update is proportional to the expected product of the activities over all visible units in

the training set minus the same over the model, where the second term is used to control the

updates not to become to positive and get rid of spurious minima

∆wi j ∝ 〈sis j〉data−〈sis j〉model. (10)

This derivative is so simple because the probability of a global configuration at thermal equilibrium

is an exponential function of its energy. Settling to thermal equilibrium makes the log-probability

a linear function of the energy and the energy is then a linear function of the weights and states

− ∂E
∂wi j

= sis j.

3 Restricted Boltzmann Machine 5

3 Restricted Boltzmann Machine

As learning in a Boltzmann Machine is slow and not very efficient, Hinton et al. (2006) found

that restricting the architecture makes inference and learning easier. They use an undirected

bipartite graph, thus no connections between the units in the layers and only one layer of hidden

units, to build a restricted Boltzmann machine (RBM) as in Figure 2.

Hidden units

Visible units

Data

Figure 2: A restricted Boltzmann Machine.

Interestingly, it takes the Restricted Boltzmann Machine (RBM) only one step to reach the

thermal equilibrium, when the visible units are clamped. We can compute the exact value of

〈vih j〉v quickly and the probabilities can all be computed in parallel. Thus, the probability of the

jth unit being on is given equivalently to Equation (3) by

p(h j = 1) =
1

1+ e
(−b j+ ∑

i∈V
viwi j)

. (11)

3.1 Learning the Weights of an RBM

The algorithm used to train our restricted Boltzmann machine is a maximum likelihood algorithm,

where we want to change our connection parameters so that they are more likely to generate

what can be observed. We start with a training vector on the visible units and then alternate

between updating all the hidden units and all the visible units in parallel. As illustrated in

Figure 3, we first let the visible units activate the feature detectors in the hidden units via their

current weights. Each feature detector then makes a stochastic decision whether to turn on or

off. Given the binary states of the feature detectors, the input data is reconstructed. We run this

chain and process for a long time until the point in time “infinity”. Hinton (2007) called this the

models “fantasy”, as the model shows here what it likes to believe in its low energy states. Since

the model should not focus on this fantasy but the data, we have to change the parameters in a

way that the probability of the data is higher and the probability of the fantasy is smaller. The

weight update rule is then similar to that of the Boltzmann machine given as

∂ p(v)
∂wi j

= 〈vih j〉0−〈vih j〉∞, (12)

where the first term tells as how often i and j are on together in the data and the second term

tells us how often i and j are on together in the models fantasy.

3 Restricted Boltzmann Machine 6

t = infinity

j

i

jj

i i

...

t = 0 t = 1

<vihj>
0

fantasy

<vihj>
1

 <vihj>
∞

Figure 3: Illustration of the alternating Gibbs sampling algorithm for a restricted Boltz-
mann machine with visible units on the bottom and hidden units on the top, connected by
the correlations 〈vih j〉 for a Markov Chain from t = 1, . . . , t = ∞.

3.2 Contrastive Divergence Learning

Finding the thermal equilibrium can be computationally expensive. Therefore we use Contrastive

Divergence as a short-cut of the above introduced learning algorithm to find an approximation

of the log-likelihood gradient. Although it does not follow the gradient it works well, a formal

derivation why can be found in (Carreira-Perpinan and Hinton 2005). Instead of running the

above chain for a long time, we just run the chain for a short time. In the most extreme case we

just run it once. Starting with our data vector clamped to the visible units we activate the feature

detectors and build a reconstruction, as is shown in Figure 4. In general we speak about k-step

Contrastive Divergence (CD-k), which means that we run our chain for k steps (Bengio 2009).

Our weight update is then defined as

∂ p(v)
∂wi j

= ε

(
〈vih j〉0−〈vih j〉k

)
, (13)

with a learning rate ε. Thus we compare the statistics measured with the data to the statistics

measured with the reconstruction of the data. Our estimate of the gradient is then biased and

this bias decreases with increasing steps (Fischer and Igel 2010).

The short-cut works because, if we start the Markov chain at the data, it wanders away towards

things it likes more. We can thus see which way the chain is going after only a few steps. Running

the chain until it reaches thermal equilibrium would therefore be a waste of time if we already

j

i

j

i

t = 0 t = 1

<vihj>
0 <vihj>

1

data reconstruction

Figure 4: Illustration of Contrastive Learning for k = 1-steps.

3 Restricted Boltzmann Machine 7

now that the weights are leading us in the wrong direction. Hence, we just need to lower the

probabilities of the confabulations the model produces after one full-step and raise the probability

of the data. The chain will then stop wandering away. The algorithm stops as soon as the

distributions of the data and the confabulations are the same (Hinton 2007). In a more graphical

explanation (Figure 5), we pull down the energy at the datapoint and pull up the energy at the

reconstruction, generating an energy minimum at the data.

Contrastive divergence fails when there exist data spaces which the model likes but are very

far from any data. These low energy holes cause the normalization term to be big and we

cannot sense them if we use the short-cut. One way to handle the trade-off between correctness

and computation time is to start with small weights and use CD1 and as soon as the Markov

chain mixes more slowly and the weights grow use CD3 then CD10 and so on (Hinton 2007).

Alternatives to Contrastive Divergence are e. g. persistent Contrastive Divergence, fast persistent

Contrastive Divergence or Score Matching, for which a short introduction can be found in e. g.

Bengio (2009), Fischer and Igel (2010), and Fischer and Igel (2012).

E datapoint + hidden (datapoint)

reconstruction + hidden (reconstruction)

t

Figure 5: The energy surface in space of the global configurations before (straight line)
and after (dotted line) a change in the weights through contrastive divergence learning.

3.3 Semi-Restricted Boltzmann Machines

As the Contrastive Divergence learning algorithm does not require the visible units to be in

conditional equilibrium with the hidden units, we can relax our restrictions to the RBM and make

it semi-restricted. Thus, we allow connections between the visible units. The training algorithm,

which can be seen in Figure 6, still starts with the training vector on the visible units. We then

update all hidden units in parallel, but also repeatedly update all the visible units in parallel

using mean-field updates while holding the hidden units fixed to get the reconstruction. In our

last step, we again update all hidden units.

4 Deep Belief Networks 8

j

i k

j

i k i k

t = 0 t = 1

<vihj>
0

<vihj>
1

i k i k

Figure 6: The Contrastive Divergence learning algorithm for a semi-restricted Boltzmann
machine.

Mathematically, our updates for the visible to hidden connections remain the same, but we

now additionally update the visible to visible connection lik via the update rule

∆lik = ε(〈vivk〉0−〈vivk〉1) (14)

4 Deep Belief Networks

Interestingly stacking several restricted Boltzmann machines on top of each other does not result

in a multi-layer restricted Boltzmann machine but in something that is more similar to sigmoid

belief nets. Thus, this chapter gives a short introduction in the generative model that can be

trained by several layers of RBMs, which is known as a Deep Belief Network (DBN).

The basic idea is that we train a layer of features that receives input from the data, we then

search for the features that are good in reconstructing the data and use the activations of those

as input for training another layer. Thus, in the second hidden layer we take the features as data

and learn features of features. It can be proved that, each time one adds another layer of features,

the model improves its lower bound (Hinton et al. 2006).

Hinton (2007) divides the learning process of the RBM into two tasks. Task (1) is non-

parametric. The machine learns generative weights that are able to transform the posterior

distribution over the hidden units into data. So, we want to have a distribution that is simpler

than the original data distribution. Task (2) is parametric. We want the machine to learn to model

the posterior distribution itself. Thus, it should find a parametric mapping from that simpler

distribution we got in task one to the data distribution. A single RBM is good at performing task

(1) and not so much at performing task (2). But a second RBM gets better at performing task

(2) because it does not need to model the original data but the posterior distribution which is

easier. We exploit these facts to create a deep belief network, as in Figure 7. To get a DBN, we

need two steps; a pre-training step to generate the weights of the RBMs and a second step where

we compose the DBN and generate data from this new model (Salakhutdinov and Hinton 2009).

In the pre-training step we train the bottom RBM and use the hidden units as data for the next

layer RBM and so on, until we reach the top layer RBM.

The greedy learning works because the weights W define several distributions. First, we get

the two distributions p(v|h) and p(h|v), that are used for the Markov chain. From those we get

4 Deep Belief Networks 9

h3

h2

h1

Data v

W3

W2

W1

Figure 7: Illustration of a Deep Belief Net, which is created by stacking RBMs above each
other. The red path is not part of the generative model, it is just used for inference. Here,
Wi are the weight matrices. the black arrow indicates alternating Gibbs sampling between
the top level RBMs and the blue arrows the top-down pass.

the joint distribution p(v,h) and automatically if we ignore the respective other part we get the

prior p(h) over h, and the prior p(v) over v. We can then define

p(v) = ∑
h

p(h)p(v|h), (15)

we do this although it is as hard to sample p(h) as it is to sample p(v). But if we improve p(h)

we improve p(v). Hence, we are searching for a prior over h that fits the aggregated posterior
better and then train the next RBM, which results in a better model (Hinton et al. 2006). The

aggregated posterior is the average over all vectors in the training set of the posterior distribution

over h

paggregated(h) = ∑
v

p(h|v). (16)

We then take the second step and compose the DBN. Between the top layers of this network we

perform alternating Gibbs sampling, these layers are labelled h3 and h2 in Figure 7. We run the

chain until we reach an equilibrium distribution. Afterwards, we perform a top-down pass to get

the statistics for all the other layers. Our two top-level layers are a restricted Boltzmann machine

and therefore an undirected model. But for the other layers we take the symmetric connections

and only consider the down going part. We thus have a directed model, that is similar to a

sigmoid belief net. Hence, the DBN is a hybrid model between an RBM and a sigmoid belief net.

The joint probability distribution of the network factorizes to

p(v,h1,h2,h3) = p(v|h1)p(h1|h2)p(h2|h3), (17)

where the first two distributions are those of sigmoid belief nets and the third is of the top-level

RBM (Bengio et al. 2007).

5 Application of an RBM in R 10

5 Application of an RBM in R

After introducing RBMs in theory, we train in this section a restricted Boltzmann machine with

the help of the statistical software R. As data to be modelled we use the MNIST database of

handwritten digits by LeCunn.1 Ruslan Salakhutdinov and Geoffrey Hinton published their

Matlab code for training an RBM and deep auto-encoders on their website.2 The following code

is based on this Matlab code and was published by Andrew Landgraf.3

We first define functions which we later use for constructing the RBM. The following two

functions define the probabilities of the connections between the visible and hidden states. Here

rbm_w is a matrix of size number of hidden units by number of visible units, the visible_state is a

binary matrix of size number of visible units by number of configurations. The returned value is

a matrix of size number of hidden units by number of configurations. This takes in the (binary)

states of the visible units, and returns the activation probabilities of the hidden units conditional

on those states. The second function is implemented analogously.

hidden _ probabilities <- function (rbm_w, visible _ state) {
1/(1+ exp(-rbm_w %*% visible _ state))

}
5

visible _ probabilities <- function (rbm_w, hidden _ state) {
1/(1+ exp(-t(rbm_w) %*% hidden _ state))

}

We now implement Contrastive divergence. In this case with k = 1 steps. The function takes

the parameters model and data and returns the approximate gradient of the function that we

are maximizing. The returned gradient is an array of the same shape as the provided model

parameter.

configuration _ goodness <- function (rbm_w, visible _state , hidden _ state) {
out =0
for (i in 1: dim(visible _ state)[2]) {

out=out+t(hidden _ state [,i]) %*% rbm_w %*% visible _ state [,i]
5 }

out/dim(visible _ state)[2]
}

correlations in the data and reconstruction set
10 configuration _ goodness _ gradient <- function (visible _state , hidden _ state) {

hidden _ state %*% t(visible _ state)/dim(visible _ state)[2]
}
to sample from the hidden and visible state
sample _ bernoulli <- function (mat) {

15 dims=dim(mat)
matrix (rbinom (prod(dims),size =1, prob=c(mat)),dims [1] , dims [2])

}

We combine the above functions to perform contrastive divergence learning and receive the

gradient. We start with the visible data and then sample the first hidden state H0 and the

1 The data can be obtained from the web page http://yann.lecun.com/exdb/mnist/. Retrieved 01.04.2015.
2 http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html. Retrieved 01.04.2015.
3 http://alandgraf.blogspot.de/2013/01/restricted-boltzmann-machines-in-r.html. Retrieved

01.04.2015.

 http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
http://alandgraf.blogspot.de/2013/01/restricted-boltzmann-machines-in-r.html

5 Application of an RBM in R 11

correlation 〈vivk〉0. We can then sample the reconstruction data V1 and the second hidden state

H1 and calculate the weight update vh0-vh1.

cd1 <- function (rbm_w, visible _data) {
visible _data = sample _ bernoulli (visible _data)
H0= sample _ bernoulli (hidden _ probabilities (rbm_w, visible _data))
vh0= configuration _ goodness _ gradient (visible _data , H0)

5 V1= sample _ bernoulli (visible _ probabilities (rbm_w, H0))
H1= hidden _ probabilities (rbm_w, V1)
vh1= configuration _ goodness _ gradient (V1 , H1)
vh0 -vh1

}

Combining all of the above defined functions we can train a model that is defined by a single

matrix of weights, where num_hidden is the number of hidden units. We then use mini-batches

without weight decay and without early stopping to get the weight matrix of the trained model.

rbm <- function (num_hidden , training _data , learning _rate , n_ iterations , ←↩
mini_ batch _size =100 , momentum =0.9 , quiet = FALSE) {

n=dim(training _data)[2]
p=dim(training _data)[1]

5 # training data has to be divisible by the mini - batch size
if (n %% mini_ batch _size != 0) {

stop("the number of test cases must be divisable by the mini_ batch _size")
}

sample random weights from a uniform distribution for rbm_w
10 model = (matrix (runif (num_ hidden *p),num_hidden ,p) * 2 - 1) * 0.1

momentum _ speed = matrix (0, num_hidden ,p)

start _of_next_mini_ batch = 1;
for (iteration _ number in 1:n_ iterations) {

15 if (! quiet) {cat("Iter",iteration _number ,"\n")}
mini_ batch = training _data[, start _of_next_mini_ batch :(start _of_next_mini_ batch + ←↩

mini_ batch _size - 1)]
start _of_next_mini_ batch = (start _of_next_mini_ batch + mini_ batch _size) %% n
gradient = cd1(model , mini_ batch)

initialize the momentum method
20 momentum _ speed = momentum * momentum _ speed + gradient

model = model + momentum _ speed * learning _rate
}
return (model)

}

In the case of the MNIST database, we specify the parameters as in the code of Hinton and

Salakhutdinov.

weights =rbm(num_ hidden =30 , training _data=train , learning _rate =.09 , n_ iterations =5000 ,
mini_ batch _size =100 , momentum =0.9)

After running the above code, we can visualize the weights of our restricted Boltzmann machine,

as can be seen in Figure 8.

A second and third way to implement RBMs in R is given by using the packages darch (Drees

2014) or deepnet (Rong 2014). The code for running the same machine as before is given below,

but the weights in both cases are inferior to those given by the first code implemented.

package : darch
myRBM <- newRBM (numVisible =dim(train)[2] , numHidden =30 , batchSize =100 , ff = FALSE , ←↩

logLevel = "INFO",
genWeightFunc = generateWeights)

6 Conclusion 12

 1 2 3 4 5 6

 7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Figure 8: Visualization of weights after training the RBM with Landgrafs code.

5 rbm <- trainRBM (myRBM , trainData =train , maxEpoch =5000 , numCD =1)

package : deepnet
rbm <- rbm. train (x=train , hidden =30 , numepochs = 5000 , batchsize = 100 , learningrate = ←↩

0.09 ,
learningrate _ scale = 1, momentum = 0.9 , visible _type = "bin", hidden _type = ←↩

"bin",
10 cd = 1)

6 Conclusion

This paper has introduced to the general ideas of energy-based models and especially the

Boltzmann machine. We have then focused on the easier to learn restricted Boltzmann machines

and their most prominent use for deep belief networks. We have seen that we do not need

to run the Gibbs sampling algorithm until it reaches its equilibrium but can get a very good

approximation of the log-likelihood gradient through Contrastive Divergence. With the short

introduction of deep belief networks, we have presented a glimpse of deep learning in artificial

intelligence. A deeper inside into deep learning with network based models can e. g. be found in

Bengio (2009).

6 Conclusion 13

As deep belief networks are an advancement of the classical neural networks with deep

structures, it could be interesting in the future to develop deep structures for other machine

learning tasks e. g. random forests.

A References

ACKLEY, D. H., G. E. HINTON, and T. J. SEJNOWSKI (1985). A Learning Algorithm for Boltzmann
Machines. In: Cognitive Science, Vol. 9, No. 1, pp. 147–169.

BENGIO, Y. (2009). Learning Deep Architectures for AI. In: Foundations and Trends in Machine
Learning, Vol. 2, No. 1, pp. 1–127.

BENGIO, Y., P. LAMBLIN, D. POPOVICI, H. LAROCHELLE, et al. (2007). Greedy layer-wise training of
deep networks. In: Advances in neural information processing systems, Vol. 19, p. 153.

CARREIRA-PERPINAN, M. A. and G. E. HINTON (2005). On contrastive divergence learning. In:

Proceedings of the tenth international workshop on artificial intelligence and statistics. Citeseer,

pp. 33–40.

DREES, M. (2014). darch: Package for deep architectures and Restricted-Bolzmann-Machines. R

package version 0.9.1.

FISCHER, A. and C. IGEL (2010). Empirical Analysis of the Divergence of Gibbs Sampling Based
Learning Algorithms for Restricted Boltzmann Machines. In: Artificial Neural Networks – ICANN
2010. Ed. by K. DIAMANTARAS, W. DUCH, and L. ILIADIS. Vol. 6354. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, pp. 208–217.

FISCHER, A. and C. IGEL (2012). An Introduction to Restricted Boltzmann Machines. In: Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Ed. by L. ALVAREZ,

M. MEJAIL, L. GOMEZ, and J. JACOBO. Vol. 7441. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, pp. 14–36.

HINTON, G. (2007). The Next Generation of Neural Networks. Presentation for Google Tech Talk.

HINTON, G. E. (2002). Training products of experts by minimizing contrastive divergence. In: Neural
computation, Vol. 14, No. 8, pp. 1771–1800.

HINTON, G. E., S. OSINDERO, and Y.-W. TEH (2006). A fast learning algorithm for deep belief nets.
In: Neural computation, Vol. 18, No. 7, pp. 1527–1554.

MURPHY, K. P. (2012). Machine learning: A probabilistic perspective. Adaptive computation and

machine learning series. Cambridge, Mass.: MIT Press.

RONG, X. (2014). deepnet: deep learning toolkit in R. R package version 0.2.

SALAKHUTDINOV, R. and G. E. HINTON (2009). Deep boltzmann machines. In: International
Conference on Artificial Intelligence and Statistics, pp. 448–455.

B List of Figures

1 A Boltzmann Machine with a symmetric connection weight w between the visible

and hidden units. 2

2 A restricted Boltzmann Machine. 5

3 Illustration of the alternating Gibbs sampling algorithm for a restricted Boltzmann

machine with visible units on the bottom and hidden units on the top, connected

by the correlations 〈vih j〉 for a Markov Chain from t = 1, . . . , t = ∞. 6

4 Illustration of Contrastive Learning for k = 1-steps. 6

5 The energy surface in space of the global configurations before (straight line) and

after (dotted line) a change in the weights through contrastive divergence learning. 7

6 The Contrastive Divergence learning algorithm for a semi-restricted Boltzmann

machine. 8

7 Illustration of a Deep Belief Net, which is created by stacking RBMs above each

other. The red path is not part of the generative model, it is just used for inference.

Here, Wi are the weight matrices. the black arrow indicates alternating Gibbs

sampling between the top level RBMs and the blue arrows the top-down pass. . . 9

8 Visualization of weights after training the RBM with Landgrafs code. 12

	Contents
	1 Introduction
	2 Energy-Based Models
	2.1 Energy Function
	2.2 Using Energies to Define Probabilities
	2.3 Boltzmann Machine Learning Algorithm

	3 Restricted Boltzmann Machine
	3.1 Learning the Weights of an RBM
	3.2 Contrastive Divergence Learning
	3.3 Semi-Restricted Boltzmann Machines

	4 Deep Belief Networks
	5 Application of an RBM in R
	6 Conclusion
	A References
	B List of Figures

