Introduction to Logic

Algorithm Design & Software Engineering
October 26, 2016
Stefan Feuerriegel

Today’s Lecture

Objectives

Learn about set operators

Understand the specification of first-order logic
Design and implement regular impressions in R

Logic

Outline

Sets

Boolean Algebra
First-Order Logic
Regular Expressions

Wrap-Up

Logic

Outline

Sets

o s 4

Sets

» A setis a collection of different values or variables
{1,2,4} or {ab,...,z}

where elements are placed in curly parenthesis

» Rule: only distinct elements matter, e.g. {1,1,2} ={2,1}
» Membership is indicated via “€”
ac{ab,....,z} and 3¢{ab,...,z}
» Set-builder notation with a “where” clause
{r?| nis an integer }
» Common notation to refer to special sets, e. g.

» R gives all real numbers

» N denotes all positive integers (including zero)

Cardinality and Subsets

Cardinality
» Cardinality counts the number of elements

|{a,b,...,z}| =26

» Sets can have an infinite cardinality, e.g. |N| = eo
» Empty set is given by 0 with |0| =0

Subsets

» Ais a subset of B if every element of A
is also in B, written AC B

» AC Bcanalsoimply A=B
» AC Bifone element x € Bfulfills x ¢ A
» Forallsets X,0 C X

Logic: Sets

Set Operators

» Given sets A= {1,2,3} and B = {3,4} as examples
» Visualizations are called Venn diagrams
Union XUY

» Set of all elements which are eitherin X or Y
» AUB=1{1,2,3,4}

Intersection XNY
» Set of all elements which are in both X and Y
» ANB={3}
» If XNY =0, then X and Y are called disjoint
Complement X\ Y
» Set of all elements of X which are notin Y
» A\B={1,2}

g sets 4

8«8

Set Operators

Exercises
Given A= {1,2,3,5,8}, B={0,2,5,7,1,9}and C={—1,4,8,10}

Find A\ B, B\ A, (AUB)N C and (ANB)NC
» A\B={3,8}
> B\A={0,7,9}
» (AuB)nCc=1{0,1,2,3,5,7,8,9}N{—1,4,810} = {8}
» (ANB)NC=1{1,2,5}N{—1,4,810} =0

Show that A\ (A\ B) = AN B holds for all sets A and B
> Proof

A\(A\B)=A\{acA|a¢ B}
={acA|la¢{acA|la¢B}}
={acA|aeB}
=ANB

o see 4

Cartesian Product
An n-tuple is an ordered list (x1,...,X,) of nelements; e.g. (1,2) # (2,1)

Cartesian product
» Mathematical operator “X” creates a new set by building tuples, i. e.

AxB:={(a,b) |acAand be B}
» Special rule M x @ = 0 for all sets M

Examples
» Givensets A={1,2} and B={i,j,k}, then

AX B: {(171)7(17./)7(17k)7(27l)7(271)7(27k)}
» The Cartesian product of sets Aq,..., Ay is

AixAgx - xAp={(a1,a2,...,an) | @& € Ar,a € Aa,...,an € Ap}

o see 4

Cartesian Product
Exercise: show for all finite sets A and B that |A x B| = |A| - |B| holds

Proof: let |A| = m, we then prove by induction over |B| = n
Base case with n=0:
let B=0,then |Ax B|=|0]=0=m-0=|A|-|B|
Inductive step:
» Assumption: |A x B| = |A| x |B| holds for all sets B with |B| = n
» Show: the assumption implies the statement for all B with |B| = n+1
» Let|B|=n+1andthus |B| > 1

» Bhas at least one element and we can chogse an arbitrary b € B
» Now we define B:= B\ {b} and thus B=BU{b}
IAxB|=|Ax (BU{b}) =|(AxB)U(Ax{b})|
=|Ax B|+|Ax {b}|
o ‘A % B| erwith asgmption
= |A[-]B]

=m(n+1)

m+m

Power Set

» Sets can be elements of sets
» Example: {a,b} € {{a,c},{ab}} but{ab}¢{ab,{ab,c}}

Power set
» Power set Z7(A) of set Ais the set of all subset of A, i.e.

P(A) = {B| BC A)
» Cardinality | Z2(A)| = 2" with n = |A|

Example
» Givenset A={1,2,3}, then

Z(A)={0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}

o see 4

De Morgan’s Law

Let X be a set with subsets A,BC X
X\ (AUB) = (X\ A)N(X\B)
X\ (ANB) = (X\A)U(X\B)

Proof (of the first law)

xeX\(AUB)< xeXandx¢ AUB
& xeXandx¢ Aandx ¢ B
(xe Xand x ¢ A) and (x € X and x ¢ B)
(x € X\ A) and (x € X\ B)
x € (X\A)N(X\B)

Tt ¢

o see ‘

Sets in R

» R has not dedicated data type for sets, instead it uses vectors

x <—- e(1, 2, 3)
y <= c(3, 4)

» is.element (x, y) oroperator 3in% tests x € y
is.element (3, x)

[1] TRUE

[1] FALSE
» Equality is tested via setequal (x, y)
setequal (x, y)
[1] FALSE
setequal (¢ (1), c(1, 1, 1))

[1] TRUE

o see ‘

Set Operators in R
» Set operators come as functions named union (x, y),
intersect (x, y) andsetdiff (x, vy)
union (x, V)
[1]1 1 2 3 4
intersect (x, vy)
[1] 3
setdiff (x, y)
[1] 1 2
setdiff (y, x)

[1] 4

o s ‘

Outline

Boolean Algebra

oaie Rooiean flasbrs ‘

Boolean Algebra

» Boolean algebra is a calculus with only two elements: {0,1}

» Values can be interpreted as “true”, “false” or “on”, “off”

» Common in computers where “0” refers to 0 volts, “1” to a reference
voltage (e.g. 5V)

» Combinations (i. e. Cartesian products) allow to store more
information; e.g. 1011000101

1 bit = 2 combinations
2 bits = 4 combinations
8 bits (or1byte) = 256 combinations
10 bits = 1024 combinations

4294 967 296 combinations

32 bits (or 4 bytes)

o Bociean flacbrs ‘

Boolean Operators

Boolean calculus includes 3 basic operations:

not — and A orV
Truth table
X y|—x XAy xVy
0O O 1 0 0
o 1| 1 0 1
1 0| O 0 1
1 110 1 1

Examples
Let a be the proposition “the car is red” and b “the car is big”
» Not: —a means “The car is not red”

» And: a/ b means “the car is both red and big”

» Or: aV b means “the car is red or big or both”

Logic: Boolean Algebra

Derived Operators

Additional operators can be derived, such as
implication = XOR & equivalence &

X Y| x=y xQy x&y

00 1 0 1

0 1 1 1 0

10 0 1 0

1 1 1 0 1
Examples

Let a denote “grandpa cooks” and b “grandma is in a good mood”
» a— b means “if Grandpa cooks, then grandma is in a good mood”
» a® b means “either Grandpa cooks or grandma is in a good mood”
» a<> bmeans “grandpa cooks if and only if grandma is in a good mood”

o Bociean flacbrs ‘

Implication Operator

» Attention is needed as implication does not imply causality
» Rewriting is possible, i.e. x =y = (—x)Vy
» The statement x = y always true if x is false

x=y=(=x)Vy
=1Vvy=1

Example
» Let x = “all cats bark” and y = “all cats are green”

» Then the implication x = y is always true:
“if all cats bark, then all cats are green”

» Cats commonly don’t bark, so the content of proposition y can
successfully be derived from it

Logic: Boolean Algebra

Laws in Boolean Algebra

A V

Commutativity XAy = YyAX xVy = yVx
Associativity xN(yANz) = (xAy)Az|xV(yAz) = (xVy)Vz
Identity XN1 = X xV0 = x
Annihilator xAN0O = 0 xVvV1l = 1
Idempotence XAX = X xXVXx = x
Complementation | xA(—-x) = 0 xV(=x) = 1
Distributivity xN(yvz) = (xAy)V(xAz)

xV(yAz) = (xVy)A(xVz)
Absorbtion xAN(xVy) = x

xV(xAy) = x
Duality -0 = 1
Double negation —(=x) = «x
De Morgan’s law —(xVy) = (=x)A(~y)

(x)V(7y) = —~(xAy)

o Bociean flacbrs ‘

Normal Forms

Every finite logical formula can be reduced to two normal forms:
n mj
@l Conjuncti : - X
[1 | junctive normal form (CNF) /\ \/ Xij
i=1j=1 optional
n mj
A Disjuncti : - X
2] junctive normal form (DNF) \/ /\ Xij
i=1j=1 optional
Example
Let f be a logical expression as follows:

OO O O
o|—= O O
oo = O
| = = O
2|0 O =
—“ O = A
alm O -
Y S

X
y
z

z)‘

CNF: (xVyVz)A(xVyV-z)A(xV-yV z)
DNF: (=X Ay AZ)V(Xx A=y A=z)V(X Ay A=z)V(Xx A=y AZ)V(Xx Ay A Z)

o Bociean flacbrs ‘

f(x,y,

Outline

First-Order Logic

oale frertrdertoge ‘

Relation

» A n-dimensional relation R C Ay X --- X Ay is a set of ordered n-tuples
» Relations can be interpreted as functions by defining

1, if (x1,...,X5) € R,
R(x1,...,Xp) :== (x _ ")
0 otherwise
Example:
» Let A be the set of all animals, C be the set of all colors

v

Let R be the relation “animal a has colorc” C Ax B

v

Then (frog, green) € A x B and it is also an element of R

v

Thus, R(frog,green) = 1 (representing true)

odie Fretoreereoe ‘

Quantifiers

Quantifiers express propositions about quantities (in the context of
relations)
Existential quantifier 3
» Interpreted as “there exists at least one”
Universal quantifier
» Interpreted as “for all holds”

Examples

dneN:n>5

» Read: there exists at least one natural number n such that n is greater
than 5

» Expression is true, sincee.g. 6 € Nand 6 > 5

VpeP:p>2
» Read: for all prime numbers p the value of p is greater than or equal to 2
» Expression is not true, since 2 is also a prime number

odie Fretoreereoe ‘

Laws in First-Order Logic

Given sets A and B and relations R,S C A,aswellas X C Ax B

—Vac A:R(a) < Jac A: —R(a)
JdJac AdbeB: T(ab)< Ibc Blac A: T(a,b)
(Vac A:R(a))A(Vd € A: S(d)) < Vaec A: R(a)AS(a)

Caution: existential and universal quantifiers are not commutative

Vac A dbeB T(ab) ¢ IbecB VacA T(ab)

» A= set of all keys, B = set of all locks
» T(a,b) = key afits into lock b
» Statements are not identical:

For all locks exists a key that fits into
There exists a key that fits into all locks

odie Fretoreereoe ‘

Quantifiers
Examples
List all elements of {n€ N | Jac Na<20Aa=n?}
» Remember 0 ¢ N

» 12=1<20,22=4<20,32=9<20,4% =16 < 20,5% =25 > 20
and all other squares are even larger

» Solutionis {1,2,3,4}

List all elementsin {n €N | Vac Nwitha< n: ais prime Va=1}
» n =1 has no smaller natural numbers a

» n=2,3,4: smaller number are elements of the set { 1,2,3} of which
all elements are prime

» For n=5, there is a= 4 = 2.2 which is not prime
» For all n > 4, there is also a = 4 which is not prime
» Solutionis {1,2,3,4}

odie Fretoreereoe ‘

Outline

Regular Expressions

oale Headar Bxpreseions ‘

Pattern Matching

» A regular expression defines a search pattern for pattern matching

» Useful when searching for strings with placeholders or wildcards
— one uses meta-characters with specific means for that purpose

» Patterns specify characters, repetitions and locations within the string

» Common use cases are finding a certain string, replacing it or
extracting information

» Syntax varies slightly across programming languages

Example
» Locate all elements which contain a pattern (here: foo)
grep ("foo", c("arm", "food"))
[1] 2

o Reauar Brpressions ‘

Pattern Matching in R

» grep (pattern, x) searches a patternin x
» It returns all indices of the vector which match the pattern

txt <- c¢("a", "ab", "acb", "accb", "acccb", "bacccc")
grep ("b", txt)

[1] 2 3 4 5 6
» Argument value=TRUE returns the matching values
grep ("b", txt, value=TRUE)
[1] "ab" "acb" "accb" "acccb" "bacccc"
» Alternatively, grepl returns Boolean values if an element matches
grepl ("b", txt)
[1] FALSE TRUE TRUE TRUE TRUE TRUE
» Search is case-sensitive by default (off:ignore.case=TRUE)

grepl ("B", txt, ignore.case=TRUE)

FALSE TRUE

Logic: Reé#uﬁr E p:rl'e;sions 11013 0k

TRUE

Pattern Matching in R

» grepexpr (pattern, string) returns the position of a match
in a string

4 H AapPesra = + he o ~AnNnA ~havrarter
b appears as the second character

gregexi)r ("b", "abc")

[[1]1]

[1] 2

attr(, "match.length")
[1] 1

attr(,"useBytes")

[1] TRUE

gregexpr ("b", "abc") [[1]][1]
[1] 2
» Returns —1 if not found

gregexpr("d", "abc") [[1]1]1[1]

oale Headar Bxpreseions ‘

Regular Expressions in R

Location meta-characters

» ~ matches the starting position within a string
txt
[1] "a" "ab" "acb" "accb" "acccb" "bacccc"
grep (""b", txt, value=TRUE)
[1] "bacccc"

» $ matches the ending position of a string
grep ("bs", txt, value=TRUE)

[1] "ab" "acb" Taeeh" Yacecd™

o Reauar Brpressions ‘

Regular Expressions in R

Special characters

» \n denotes a new line
» Quotation marks must be escaped via the backslash

X <_ "\"String\""
Boolean OR
» A vertical bar | distinguishes alternatives
grep ("gray|grey", c("gray", "grey", "different"), value=TRUE)

[11 "gray" "grey"

Grouping
» Parentheses group logical units

grep("gr(ale)y", c("gray", "grey", "different"), value=TRUE)

[1} "grayu "grey"

o Reauar Brpressions ‘

Regular Expressions in R
Quantifiers
» A dot . matches any character
grep("‘", c("a", "bll, "C", ll\nll), value:TRUE)
[11 llall llbll llCll ll\nll

» A question mark ? denotes zero or one occurrences of the preceding

literal
— i.e. makes the previous character optional

grep ("colou?r", ec("color", "colour"), value=TRUE)

[1] "color" "colour"

grep ("ab?a", c("a", "aa", "aba", "abba"), value=TRUE)
[1] "aa" "aba"

can be used together with grou

19

grep ("a (xxx)?a", ec("a", "aa", "axxxa", "axxxxa"), value=TRUE)

[1] "aa" "axxxa"

o Reauar Brpressions ‘

Regular Expressions in R
Quantifiers

» A plus + indicates one or more occurrences
grep("at", c("", "b", "a", "aa", "aaab"), value=TRUE)
[1] "a" "aa" "aaab"

» An asterisk indicates zero or more occurrences
grep ("ax", c("", "b", "a", "aa", "aaab"), value=TRUE)
[1] " "pb" "a" "aa" "aaab"
grep ("xaxy", c("", "a", "xy", "xay", "xaay"), value=TRUE)
#4# [1]1 "xy" "xay" "xaay"

» Alternatively, specify a fixed number of occurrences or a range
grep ("x{2}", c("x", "xx", "xxx", "xxxx"), value=TRUE)
[1] "xx" "xxx" "xxxx"
grep ("x{1,3}", c("x", "xx", "xxx", "xxxx"), value=TRUE)

Logic: Reét#xr Eip;legsiorgx " "xx"

M " "rseex "

Regular Expressions in R
Symbol classes
» Bundle a set of different characters inside [and] for ease-of-use
grep ("analy[sz]e", c("analyse", "analyze"), value=TRUE)
[1] "analyse" "analyze"
» Digitsvia [[:digit:]] or\\dor [0-9]

rep("[[:digit:]] euro", c("3 euro", "33 euro",
grep g
"three euro"),
value=TRUE)

[1] "3 euro" "33 euro"
» Lower-case lettersvia [[:1lower:]] or [a—z]
grep("[[:lower:]]", c("", "a", "z", "A"), value=TRUE)

[1} ngm nwgn

» Both letters and digits via \\w or [A-z0-9_]

o Reauar Brpressions ‘

Regular Expressions in R

Symbol classes

» Any space character (tabulator, new line, space, etc.) via
[[:space:]]

grep("[[:space:J}", c(ll", "."’ "!"’ "X“’ " ", ll\n")’
value=TRUE)

[1} n n” " \nll
» Any punctuationvia [[:punct:]]

grep("[[:pul’lct:]}", c("", "'", "!"’ HX", n ", "\nll),
value=TRUE)

[11 mowonmgn

o Reauar Brpressions ‘

Regular Expressions in R
Examples

cars <- rownames (mtcars)
grep ("xer", cars)

[1] 7 8 9 10 11 12 13 14 17 22 29 30 31

grep ("xer", cars, value=TRUE)

#4# [1] "Duster 360" "Merc 240D" "Merc 230"

#4 [4] "Merc 280" "Merc 280C" "Merc 450SE"

[7] "Merc 450SL" "Merc 450SLC" "Chrysler Imperia
[10] "Dodge Challenger" "Ford Pantera L" "Ferrari Dino"

[13] "Maserati Bora"

grep ("er+a", cars, value=TRUE)

[1] "Ford Pantera L" "Ferrari Dino" "Maserati Bora"

oale Headar Bxpreseions ‘

Regular Expressions in R
Examples

grep ("d+er", cars, value=TRUE)

character (0)

grep ("xer{2}", cars, value=TRUE)

[1] "Ferrari Dino"

grep (""F", cars, value=TRUE)

[1] "Fiat 128" "Fiat X1-9" "Ford Pantera L" "Ferrar
grep (" (t|g)er", cars, value=TRUE)

[1] "Duster 360" "Dodge Challenger" "Ford Pantera L"

oale Headar Bxpreseions ‘

Regular Expressions in R
Examples

grep ("\\dS", cars, value=TRUE)
[1] "Merc 450SE" "Merc 450SL" "Merc 450SLC"
grep ("D ([a-z]*)", cars, value=TRUE)

[1] "Datsun 710" "Hornet 4 Drive" "Duster 360"
[4] "Merc 240D" "Dodge Challenger" "Ferrari Dino"

grep ("~d([a-z]*)", cars, value=TRUE, ignore.case=TRUE)

[1] "Datsun 710" "Duster 360" "Dodge Challenger"

oale Headar Bxpreseions ‘

Replacements and Extraction
Replacements
» gsub (pattern, replacement, x) replaces patternsin x
gsub ("x", "a", "abcxyz")
[1] "abcayz"
gsub ("colou?r", "red", "Please write in colour")

[1] "Please write in red"

Extraction
» Load package gsubfn

library (gsubfn)

» strapply(x, pattern) extracts partin parentheses from any
match

strapply ("3 euro", " ([[:digit:]]) euro") [[1l]]
[11 "3"

o Reauar Brpressions ‘

Representation as Automaton

» Regular expression can be visualized as a finite automaton
» Arrows indicate allowed expressions
» Terminal states have two circles

Example: ab (a|b) +

Start

Logic: Regular Expressions

Outline

Wrap-Up

roaie el ‘

Wrap-Up

Sets
» Operations: union, intersection, complement, cartesian product, power
set, cardinality
» De Morgan’s law
Boolean algebra
» Elements 0 and 1 with basic operators: A, V and -
» Derived operators: =, & and &
» Conjunctive and disjunctive normal forms
First-order logic
» Relations
» Quantifiers: 3 and V
Regular expressions
» Search patterns for string matching, extraction of sub-strings and
replacements
» Include meta-characters, symbol classes, ORs and quantifiers
» Regular expressions be rewritten as automatons
» Rigrep(...),grepl(...),grepexpr(...) and

	Sets
	Boolean Algebra
	First-Order Logic
	Regular Expressions
	Wrap-Up

