Introduction to Logic

Algorithm Design & Software Engineering October 26, 2016 Stefan Feuerriegel

Today's Lecture

Objectives

- Learn about set operators
- 2 Understand the specification of first-order logic
- 3 Design and implement regular impressions in R

Outline

1 Sets

- 2 Boolean Algebra
- 3 First-Order Logic
- 4 Regular Expressions

5 Wrap-Up

Outline

1 Sets

- 2 Boolean Algebra
- 3 First-Order Logic
- 4 Regular Expressions
- 5 Wrap-Up

Sets

A set is a collection of different values or variables

 $\{1,2,4\}$ or $\{a,b,\ldots,z\}$

where elements are placed in curly parenthesis

- ▶ Rule: only distinct elements matter, e.g. $\{1, 1, 2\} = \{2, 1\}$
- ► Membership is indicated via "∈"

$$a \in \{a, b, \dots, z\}$$
 and $3 \notin \{a, b, \dots, z\}$

Set-builder notation with a "where" clause

 $\{n^2 \mid n \text{ is an integer}\}$

- Common notation to refer to special sets, e.g.
 - \mathbb{R} gives all real numbers
 - ► N denotes all positive integers (including zero)

Cardinality and Subsets

Cardinality

Cardinality counts the number of elements

 $|\{a, b, \ldots, z\}| = 26$

- ▶ Sets can have an infinite cardinality, e.g. $|\mathbb{N}| = \infty$
- Empty set is given by \emptyset with $|\emptyset| = 0$

Subsets

- A is a subset of B if every element of A is also in B, written A ⊆ B
- $A \subseteq B$ can also imply A = B
- $A \subset B$ if one element $x \in B$ fulfills $x \notin A$
- For all sets $X, \emptyset \subseteq X$

Set Operators

- Given sets $A = \{1, 2, 3\}$ and $B = \{3, 4\}$ as examples
- Visualizations are called Venn diagrams

Union $X \cup Y$

- ► Set of all elements which are either in X or Y
- $A \cup B = \{1, 2, 3, 4\}$

Intersection $X \cap Y$

- ► Set of all elements which are in both X and Y
- $\blacktriangleright A \cap B = \{3\}$
- If $X \cap Y = \emptyset$, then X and Y are called disjoint

Complement $X \setminus Y$

- ► Set of all elements of X which are **not in** Y
- $\bullet \ A \setminus B = \{1, 2\}$

Set Operators

Exercises

Given $A = \{1, 2, 3, 5, 8\}, B = \{0, 2, 5, 7, 1, 9\}$ and $C = \{-1, 4, 8, 10\}$

1 Find $A \setminus B$, $B \setminus A$, $(A \cup B) \cap C$ and $(A \cap B) \cap C$

$$A \setminus B = \{3, 8\}$$

- $B \setminus A = \{0, 7, 9\}$
- ► $(A \cup B) \cap C = \{0, 1, 2, 3, 5, 7, 8, 9\} \cap \{-1, 4, 8, 10\} = \{8\}$
- $(A \cap B) \cap C = \{1, 2, 5\} \cap \{-1, 4, 8, 10\} = \emptyset$

2 Show that $A \setminus (A \setminus B) = A \cap B$ holds for all sets A and B

Proof

$$A \setminus (A \setminus B) = A \setminus \{ a \in A \mid a \notin B \}$$
$$= \{ a \in A \mid a \notin \{ a \in A \mid a \notin B \} \}$$
$$= \{ a \in A \mid a \in B \}$$
$$= A \cap B$$

Cartesian Product

An *n*-tuple is an ordered list (x_1, \ldots, x_n) of *n* elements; e.g. $(1,2) \neq (2,1)$

Cartesian product

► Mathematical operator "×" creates a new set by building tuples, i.e.

 $A \times B := \{ (a, b) \mid a \in A \text{ and } b \in B \}$

• Special rule $M \times \emptyset = \emptyset$ for all sets M

Examples

• Given sets
$$A = \{1, 2\}$$
 and $B = \{i, j, k\}$, then

$$A \times B = \{ (1,i), (1,j), (1,k), (2,i), (2,j), (2,k) \}$$

• The Cartesian product of sets A_1, \ldots, A_n is

$$A_1 \times A_2 \times \cdots \times A_n = \{ (a_1, a_2, \dots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n \}$$

Cartesian Product

Exercise: show for all finite sets *A* and *B* that $|A \times B| = |A| \cdot |B|$ holds

Proof: let |A| = m, we then prove by induction over |B| = n

Base case with n = 0:

let $B = \emptyset$, then $|A \times B| = |\emptyset| = 0 = m \cdot 0 = |A| \cdot |B|$

Inductive step:

- ► Assumption: $|A \times B| = |A| \times |B|$ holds for all sets *B* with |B| = n
- Show: the assumption implies the statement for all *B* with |B| = n + 1
 - Let |B| = n + 1 and thus $|B| \ge 1$
 - ▶ *B* has at least one element and we can choose an arbitrary $b \in B$
 - Now we define $\tilde{B} := B \setminus \{b\}$ and thus $B = \tilde{B} \cup \{b\}$

$$|A \times B| = |A \times (\tilde{B} \cup \{b\}) = |(A \times \tilde{B}) \cup (A \times \{b\})|$$
$$= |A \times \tilde{B}| + |A \times \{b\}|$$
$$= |A \times \tilde{B}| + m^{\text{with assumption}} = nm + m$$
$$= m(n+1) = |A| \cdot |B|$$

Power Set

- Sets can be elements of sets
- Example: $\{a,b\} \in \{\{a,c\},\{a,b\}\}$, but $\{a,b\} \notin \{a,b,\{a,b,c\}\}$

Power set

• Power set $\mathcal{P}(A)$ of set A is the set of all subset of A, i. e.

 $\mathscr{P}(A) = \{ B \mid B \subseteq A \}$

• Cardinality $|\mathscr{P}(A)| = 2^n$ with n = |A|

Example

► Given set A = { 1,2,3 }, then

 $\mathscr{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

De Morgan's Law

Let *X* be a set with subsets $A, B \subseteq X$

1
$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$$

2 $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$

Proof (of the first law)

$$\begin{array}{ll} x \in X \setminus (A \cup B) \Leftrightarrow & x \in X \text{ and } x \notin A \cup B \\ \Leftrightarrow & x \in X \text{ and } x \notin A \text{ and } x \notin B \\ \Leftrightarrow & (x \in X \text{ and } x \notin A) \text{ and } (x \in X \text{ and } x \notin B) \\ \Leftrightarrow & (x \in X \setminus A) \text{ and } (x \in X \setminus B) \\ \Leftrightarrow & x \in (X \setminus A) \cap (X \setminus B) \end{array}$$

Sets in R

R has not dedicated data type for sets, instead it uses vectors

```
x <- c(1, 2, 3)
y <- c(3, 4)
```

▶ is.element(x, y) or operator %in% tests x ∈ y

```
is.element(3, x)
## [1] TRUE
4 %in% x
## [1] FALSE
```

Equality is tested via setequal (x, y)

```
setequal(x, y)
## [1] FALSE
setequal(c(1), c(1, 1, 1))
## [1] TRUE
```

Set Operators in R

Set operators come as functions named union(x, y), intersect(x, y) and setdiff(x, y)

```
union(x, y)
## [1] 1 2 3 4
intersect(x, y)
## [1] 3
setdiff(x, y)
## [1] 1 2
setdiff(y, x)
## [1] 4
```

Outline

1 Sets

- 2 Boolean Algebra
 - 3 First-Order Logic
- 4 Regular Expressions
- 5 Wrap-Up

Boolean Algebra

- ► Boolean algebra is a calculus with only two elements: {0,1}
- Values can be interpreted as "true", "false" or "on", "off"
- Common in computers where "0" refers to 0 volts, "1" to a reference voltage (e. g. 5 V)
- Combinations (i. e. Cartesian products) allow to store more information; e.g. 1011000101

1 bit		=	2 combinations
2 bits		=	4 combinations
8 bits	(or 1 byte)	=	256 combinations
10 bits		=	1024 combinations
32 bits	(or 4 bytes)	=	4 294 967 296 combinations

Boolean Operators

Boolean calculus includes 3 basic operations:

not \neg and \land or \lor

Truth table

X	y	$\neg x$	$x \wedge y$	$x \lor y$
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

Examples

Let a be the proposition "the car is red" and b "the car is big"

- ▶ Not: ¬*a* means "The car is not red"
- ▶ And: *a*∧*b* means "the car is both red and big"
- ▶ Or: *a* ∨ *b* means "the car is red or big or both"

Derived Operators

Additional operators can be derived, such as

X	У	$x \Rightarrow y$	$x \oplus y$	$x \Leftrightarrow y$
0	0	1	0	1
0	1	1	1	0
1	0	0	1	0
1	1	1	0	1

Examples

Let a denote "grandpa cooks" and b "grandma is in a good mood"

- ► a → b means "if Grandpa cooks, then grandma is in a good mood"
- ► a⊕b means "either Grandpa cooks or grandma is in a good mood"
- ► a ↔ b means "grandpa cooks if and only if grandma is in a good mood"

Implication Operator

- Attention is needed as implication does not imply causality
- Rewriting is possible, i. e. $x \Rightarrow y = (\neg x) \lor y$
- The statement $x \Rightarrow y$ always true if x is false

$$x \Rightarrow y = (\neg x) \lor y$$
$$= (\neg 0) \lor y$$
$$= 1 \lor y = 1$$

Example

- ► Let *x* = "all cats bark" and *y* = "all cats are green"
- ► Then the implication x ⇒ y is always true: "if all cats bark, then all cats are green"
- Cats commonly don't bark, so the content of proposition y can successfully be derived from it

Laws in Boolean Algebra

		\wedge			\vee	
Commutativity	$x \wedge y$	=	$y \wedge x$	$x \lor y$	=	$y \lor x$
Associativity	$x \wedge (y \wedge z)$	=	$(x \wedge y) \wedge z$	$x \lor (y \land z)$	=	$(x \lor y) \lor z$
Identity	$x \wedge 1$	=	x	$x \lor 0$	=	X
Annihilator	$x \wedge 0$	=	0	<i>x</i> ∨ 1	=	1
Idempotence	$x \wedge x$	=	x	$x \lor x$	=	X
Complementation	$x \wedge (\neg x)$	=	0	$x \vee (\neg x)$	=	1
Distributivity	$x \wedge (y \vee z)$	=	$(x \wedge y) \vee (x$	$(\wedge z)$		
	$x \lor (y \land z)$	=	$(x \lor y) \land (x$	$(\lor z)$		
Absorbtion	$x \wedge (x \vee y)$	=	X			
	$x \lor (x \land y)$	=	X			
Duality	一0	=	1			
Double negation	$\neg(\neg x)$	=	X			
De Morgan's law	$\neg(x \lor y)$	=	$(\neg x) \land (\neg y)$	·)		
	$(\neg x) \lor (\neg y)$	=	$\neg(x \land y)$			

Normal Forms

Every finite logical formula can be reduced to two normal forms:

1 Conjunctive normal form (CNF):
$$\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_i} \underbrace{\neg}_{optional} x_{ij}$$

2 Disjunctive normal form (DNF): $\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_i} \underbrace{\neg}_{optional} x_{ij}$

Example

Let f be a logical expression as follows:

 $CNF: (x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$ DNF: $(\neg x \land y \land z) \lor (x \land \neg y \land \neg z) \lor (x \land y \land \neg z) \lor (x \land y \land z)$

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

Relation

- ► A *n*-dimensional relation $R \subseteq A_1 \times \cdots \times A_n$ is a set of ordered *n*-tuples
- Relations can be interpreted as functions by defining

$$R(x_1,\ldots,x_n) := \begin{cases} 1, & \text{if } (x_1,\ldots,x_n) \in R, \\ 0 & \text{otherwise} \end{cases}$$

Example:

- ► Let A be the set of all animals, C be the set of all colors
- Let *R* be the relation "animal *a* has color c" $\subset A \times B$
- Then (frog, green) $\in A \times B$ and it is also an element of R
- Thus, R(frog, green) = 1 (representing true)

Quantifiers

Quantifiers express propositions about quantities (in the context of relations)

- 1 Existential quantifier ∃
 - Interpreted as "there exists at least one"
- 2 Universal quantifier \forall
 - Interpreted as "for all holds"

Examples

1 $\exists n \in \mathbb{N} : n > 5$

- Read: there exists at least one natural number n such that n is greater than 5
- Expression is true, since e.g. $6\in\mathbb{N}$ and 6>5

2 $\forall p \in \mathbb{P} : p > 2$

- ► Read: for all prime numbers *p* the value of *p* is greater than or equal to 2
- Expression is not true, since 2 is also a prime number

Laws in First-Order Logic

Given sets A and B and relations $R, S \subseteq A$, as well as $X \subseteq A \times B$

$$\neg \forall a \in A : R(a) \Leftrightarrow \exists a \in A : \neg R(a)$$
$$\exists a \in A \exists b \in B : T(a,b) \Leftrightarrow \exists b \in B \exists a \in A : T(a,b)$$
$$(\forall a \in A : R(a)) \land (\forall a' \in A : S(a')) \Leftrightarrow \forall a \in A : R(a) \land S(a)$$

Caution: existential and universal quantifiers are not commutative

 $\forall a \in A \quad \exists b \in B \quad T(a,b) \quad \nleftrightarrow \quad \exists b \in B \quad \forall a \in A \quad T(a,b)$

- ► A = set of all keys, B = set of all locks
- T(a,b) = key a fits into lock b
- Statements are not identical:
 - 1 For all locks exists a key that fits into
 - 2 There exists a key that fits into all locks

Quantifiers

Examples

List all elements of $\{n \in \mathbb{N} \mid \exists a \in \mathbb{N} a < 20 \land a = n^2\}$

- Remember $0 \notin \mathbb{N}$
- ▶ $1^2 = 1 < 20, 2^2 = 4 < 20, 3^2 = 9 < 20, 4^2 = 16 < 20, 5^2 = 25 > 20$ and all other squares are even larger
- ► Solution is {1,2,3,4}

List all elements in $\{n \in \mathbb{N} \mid \forall a \in \mathbb{N} \text{ with } a < n : a \text{ is prime } \forall a = 1\}$

- n = 1 has no smaller natural numbers a
- ► n = 2,3,4: smaller number are elements of the set {1,2,3} of which all elements are prime
- ▶ For n = 5, there is $a = 4 = 2 \cdot 2$ which is not prime
- For all n > 4, there is also a = 4 which is not prime
- ► Solution is {1,2,3,4}

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

Pattern Matching

- A regular expression defines a search pattern for pattern matching
- ► Useful when searching for strings with placeholders or wildcards → one uses meta-characters with specific means for that purpose
- Patterns specify characters, repetitions and locations within the string
- Common use cases are finding a certain string, replacing it or extracting information
- Syntax varies slightly across programming languages

Example

Locate all elements which contain a pattern (here: foo)

```
grep("foo", c("arm", "food"))
## [1] 2
```

Pattern Matching in R

- grep (pattern, x) searches a pattern in x
- It returns all indices of the vector which match the pattern

```
txt <- c("a", "ab", "acb", "accb", "acccb", "bacccc")
grep("b", txt)
## [1] 2 3 4 5 6</pre>
```

Argument value=TRUE returns the matching values

```
grep("b", txt, value=TRUE)
## [1] "ab" "acb" "accb" "acccb" "bacccc"
```

Alternatively, grepl returns Boolean values if an element matches

```
grepl("b", txt)
## [1] FALSE TRUE TRUE TRUE TRUE TRUE
```

► Search is case-sensitive by default (off:ignore.case=TRUE)

```
grep1("B", txt, ignore.case=TRUE)
```

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

Pattern Matching in R

> grepexpr(pattern, string) returns the position of a match in a string

```
# b appears as the second character
gregexpr("b", "abc")
## [[1]]
## [1] 2
## attr(,"match.length")
## [1] 1
## attr(,"useBytes")
## [1] TRUE
gregexpr("b", "abc")[[1]][1]
## [1] 2
```

► Returns -1 if not found

```
gregexpr("d", "abc")[[1]][1]
## [1] -1
```

Location meta-characters

^ matches the starting position within a string

```
txt
## [1] "a" "ab" "acb" "accb" "acccb" "bacccc"
grep("^b", txt, value=TRUE)
## [1] "bacccc"
```

\$ matches the ending position of a string

```
grep("b$", txt, value=TRUE)
## [1] "ab" "acb" "accb" "acccb"
```

Special characters

- In denotes a new line
- Quotation marks must be escaped via the backslash

x <- "\"string\""</pre>

Boolean OR

A vertical bar | distinguishes alternatives

```
grep("gray|grey", c("gray", "grey", "different"), value=TRUE)
## [1] "gray" "grey"
```

Grouping

Parentheses group logical units

```
grep("gr(a|e)y", c("gray", "grey", "different"), value=TRUE)
## [1] "gray" "grey"
```

Quantifiers

A dot . matches any character

```
grep(".", c("a", "b", "c", "\n"), value=TRUE)
## [1] "a" "b" "c" "\n"
```

A question mark ? denotes zero or one occurrences of the preceding literal

```
\rightarrow i.e. makes the previous character optional
```

```
grep("colou?r", c("color", "colour"), value=TRUE)
## [1] "color" "colour"
grep("ab?a", c("a", "aa", "aba", "abba"), value=TRUE)
## [1] "aa" "aba"
# can be used together with grouping
grep("a(xxx)?a", c("a", "aa", "axxxa", "axxxxa"), value=TRUE)
## [1] "aa" "axxxa"
```

Quantifiers

A plus + indicates one or more occurrences

grep("a+", c("", "b", "a", "aa", "aaab"), value=TRUE)
[1] "a" "aa" "aaab"

An asterisk * indicates zero or more occurrences

grep("a*", c("", "b", "a", "aa", "aaab"), value=TRUE)
[1] "" "b" "a" "aa" "aaab"
grep("xa*y", c("", "a", "xy", "xay", "xaay"), value=TRUE)
[1] "xy" "xay" "xaay"

Alternatively, specify a fixed number of occurrences or a range

```
grep("x{2}", c("x", "xx", "xxx", "xxxx"), value=TRUE)
## [1] "xx" "xxx" "xxxx"
grep("x{1,3}", c("x", "xx", "xxx", "xxxx"), value=TRUE)
Logic: Re#U#rELpTelsions"x" "xx" "xxx"
```

Symbol classes

► Bundle a set of different characters inside [and] for ease-of-use

```
grep("analy[sz]e", c("analyse", "analyze"), value=TRUE)
## [1] "analyse" "analyze"
```

▶ Digits via [[:digit:]] or \\d or [0-9]

[1] "3 euro" "33 euro"

Lower-case letters via [[:lower:]] or [a-z]

```
grep("[[:lower:]]", c("", "a", "z", "A"), value=TRUE)
## [1] "a" "z"
```

▶ Both letters and digits via \\w or [A-z0-9_]

Symbol classes

Any space character (tabulator, new line, space, etc.) via [[:space:]]

Any punctuation via [[:punct:]]

Regular Expressions in R Examples

```
cars <- rownames (mtcars)
qrep("*er", cars)
## [1] 7 8 9 10 11 12 13 14 17 22 29 30 31
grep("*er", cars, value=TRUE)
## [1] "Duster 360" "Merc 240D"
                                           "Merc 230"
## [4] "Merc 280" "Merc 280C"
                                           "Merc 450SE"
## [7] "Merc 450SL" "Merc 450SLC"
                                            "Chrysler Imperia
## [10] "Dodge Challenger" "Ford Pantera L"
                                           "Ferrari Dino"
## [13] "Maserati Bora"
grep("er+a", cars, value=TRUE)
## [1] "Ford Pantera L" "Ferrari Dino" "Maserati Bora"
```

Regular Expressions in R Examples

```
grep("d+er", cars, value=TRUE)
## character(0)
grep("*er{2}", cars, value=TRUE)
## [1] "Ferrari Dino"
grep("^F", cars, value=TRUE)
## [1] "Fiat 128" "Fiat X1-9" "Ford Pantera L" "Ferrar
grep("(t|g)er", cars, value=TRUE)
## [1] "Duster 360"
                         "Dodge Challenger" "Ford Pantera L"
```

Regular Expressions in R Examples

```
grep("\\dS", cars, value=TRUE)
## [1] "Merc 450SE" "Merc 450SL" "Merc 450SLC"
grep("D([a-z]*)", cars, value=TRUE)
## [1] "Datsun 710" "Hornet 4 Drive" "Duster 360"
## [4] "Merc 240D"
                        "Dodge Challenger" "Ferrari Dino"
grep("^d([a-z]*)", cars, value=TRUE, ignore.case=TRUE)
## [1] "Datsun 710" "Duster 360" "Dodge Challenger"
```

Replacements and Extraction

Replacements

▶ gsub(pattern, replacement, x) replaces patterns in x

```
gsub("x", "a", "abcxyz")
## [1] "abcayz"
gsub("colou?r", "red", "Please write in colour")
## [1] "Please write in red"
```

Extraction

Load package gsubfn

library(gsubfn)

strapply(x, pattern) extracts part in parentheses from any match

```
strapply("3 euro", "([[:digit:]]) euro")[[1]]
## [1] "3"
```

Representation as Automaton

- Regular expression can be visualized as a finite automaton
- Arrows indicate allowed expressions
- Terminal states have two circles

Example: ab (a | b) +

Outline

1 Sets

- 2 Boolean Algebra
- 3 First-Order Logic
- 4 Regular Expressions
- 5 Wrap-Up

Wrap-Up

1 Sets

- Operations: union, intersection, complement, cartesian product, power set, cardinality
- De Morgan's law
- 2 Boolean algebra
 - Elements 0 and 1 with basic operators: \land,\lor and \neg
 - Derived operators: \Rightarrow , \oplus and \Leftrightarrow
 - Conjunctive and disjunctive normal forms
- 3 First-order logic
 - Relations
 - Quantifiers: \exists and \forall
- 4 Regular expressions
 - Search patterns for string matching, extraction of sub-strings and replacements
 - Include meta-characters, symbol classes, ORs and quantifiers
 - Regular expressions be rewritten as automatons
 - R:grep(...),grepl(...),grepexpr(...) and

Logic: Wrap-Up gsub(...)