
Introduction to Logic
Algorithm Design & Software Engineering

October 26, 2016
Stefan Feuerriegel

Today’s Lecture

Objectives

1 Learn about set operators

2 Understand the specification of first-order logic

3 Design and implement regular impressions in R

2Logic

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

3Logic

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

4Logic: Sets

Sets

I A set is a collection of different values or variables

{1,2,4} or {a,b, . . . ,z}

where elements are placed in curly parenthesis

I Rule: only distinct elements matter, e. g. {1,1,2}= {2,1}
I Membership is indicated via “∈”

a ∈ {a,b, . . . ,z} and 3 /∈ {a,b, . . . ,z}

I Set-builder notation with a “where” clause{
n2 | n is an integer

}
I Common notation to refer to special sets, e. g.

I R gives all real numbers
I N denotes all positive integers (including zero)

5Logic: Sets

Cardinality and Subsets

Cardinality
I Cardinality counts the number of elements

|{a,b, . . . ,z}|= 26

I Sets can have an infinite cardinality, e. g. |N|= ∞

I Empty set is given by /0 with | /0|= 0

Subsets
I A is a subset of B if every element of A

is also in B, written A⊆ B

I A⊆ B can also imply A = B

I A⊂ B if one element x ∈ B fulfills x /∈ A

I For all sets X , /0⊆ X

B

A

6Logic: Sets

Set Operators

I Given sets A = {1,2,3} and B = {3,4} as examples

I Visualizations are called Venn diagrams

Union X ∪Y

I Set of all elements which are either in X or Y

I A∪B = {1,2,3,4}

Intersection X ∩Y

I Set of all elements which are in both X and Y

I A∩B = {3}
I If X ∩Y = /0, then X and Y are called disjoint

Complement X \Y

I Set of all elements of X which are not in Y

I A\B = {1,2}

7Logic: Sets

Set Operators

Exercises
Given A = {1,2,3,5,8}, B = {0,2,5,7,1,9} and C = {−1,4,8,10}

1 Find A\B, B \A, (A∪B)∩C and (A∩B)∩C
I A\B = {3,8}
I B \A = {0,7,9}
I (A∪B)∩C = {0,1,2,3,5,7,8,9}∩{−1,4,8,10}= {8}
I (A∩B)∩C = {1,2,5}∩{−1,4,8,10}= /0

2 Show that A\ (A\B) = A∩B holds for all sets A and B
I Proof

A\ (A\B) = A\{a ∈ A | a /∈ B }
= {a ∈ A | a /∈ {a ∈ A | a /∈ B }}
= {a ∈ A | a ∈ B }
= A∩B

8Logic: Sets

Cartesian Product

An n-tuple is an ordered list (x1, . . . ,xn) of n elements; e. g. (1,2) 6= (2,1)

Cartesian product
I Mathematical operator “×” creates a new set by building tuples, i. e.

A×B := {(a,b) | a ∈ A and b ∈ B }

I Special rule M× /0 = /0 for all sets M

Examples
I Given sets A = {1,2} and B = { i, j,k }, then

A×B = {(1, i),(1, j),(1,k),(2, i),(2, j),(2,k)}

I The Cartesian product of sets A1, . . . ,An is

A1×A2×·· ·×An = {(a1,a2, . . . ,an) | a1 ∈ A1,a2 ∈ A2, . . . ,an ∈ An }

9Logic: Sets

Cartesian Product

Exercise: show for all finite sets A and B that |A×B|= |A| · |B| holds

Proof: let |A|= m, we then prove by induction over |B|= n

Base case with n = 0:
let B = /0, then |A×B|= | /0|= 0 = m ·0 = |A| · |B|
Inductive step:

I Assumption: |A×B|= |A|× |B| holds for all sets B with |B|= n
I Show: the assumption implies the statement for all B with |B|= n+1

I Let |B|= n+1 and thus |B| ≥ 1
I B has at least one element and we can choose an arbitrary b ∈ B
I Now we define B̃ := B \{b} and thus B = B̃∪{b}

|A×B|= |A×
(
B̃∪{b}

)
= |
(
A× B̃

)
∪ (A×{b}) |

= |A× B̃|+ |A×{b}|

= |A× B̃|+m
with assumption

= n m+m

= m (n+1) = |A| · |B|
10Logic: Sets

Power Set

I Sets can be elements of sets

I Example: {a,b} ∈ {{a,c } ,{a,b}}, but {a,b} /∈ {a,b,{a,b,c }}

Power set
I Power set P(A) of set A is the set of all subset of A, i. e.

P(A) = {B | B ⊆ A}

I Cardinality |P(A)|= 2n with n = |A|

Example
I Given set A = {1,2,3}, then

P(A) = { /0,{1} ,{2} ,{3} ,{1,2} ,{1,3} ,{2,3} ,{1,2,3}}

11Logic: Sets

De Morgan’s Law

Let X be a set with subsets A,B ⊆ X

1 X \ (A∪B) = (X \A)∩ (X \B)

2 X \ (A∩B) = (X \A)∪ (X \B)

Proof (of the first law)

x ∈ X \ (A∪B)⇔ x ∈ X and x /∈ A∪B

⇔ x ∈ X and x /∈ A and x /∈ B

⇔ (x ∈ X and x /∈ A) and (x ∈ X and x /∈ B)

⇔ (x ∈ X \A) and (x ∈ X \B)

⇔ x ∈ (X \A)∩ (X \B)

12Logic: Sets

Sets in R

I R has not dedicated data type for sets, instead it uses vectors

x <- c(1, 2, 3)
y <- c(3, 4)

I is.element(x, y) or operator %in% tests x ∈ y

is.element(3, x)

[1] TRUE

4 %in% x

[1] FALSE

I Equality is tested via setequal(x, y)

setequal(x, y)

[1] FALSE

setequal(c(1), c(1, 1, 1))

[1] TRUE

13Logic: Sets

Set Operators in R

I Set operators come as functions named union(x, y),
intersect(x, y) and setdiff(x, y)

union(x, y)

[1] 1 2 3 4

intersect(x, y)

[1] 3

setdiff(x, y)

[1] 1 2

setdiff(y, x)

[1] 4

14Logic: Sets

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

15Logic: Boolean Algebra

Boolean Algebra

I Boolean algebra is a calculus with only two elements: {0,1}
I Values can be interpreted as “true”, “false” or “on”, “off”

I Common in computers where “0” refers to 0 volts, “1” to a reference
voltage (e. g. 5 V)

I Combinations (i. e. Cartesian products) allow to store more
information; e. g. 1011000101

1 bit = 2 combinations
2 bits = 4 combinations
. . .
8 bits (or 1 byte) = 256 combinations
10 bits = 1024 combinations
. . .
32 bits (or 4 bytes) = 4 294 967 296 combinations

16Logic: Boolean Algebra

Boolean Operators

Boolean calculus includes 3 basic operations:
not ¬ and ∧ or ∨

Truth table

x y ¬x x ∧ y x ∨ y
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

Examples
Let a be the proposition “the car is red” and b “the car is big”

I Not: ¬a means “The car is not red”

I And: a∧b means “the car is both red and big”

I Or: a∨b means “the car is red or big or both”

17Logic: Boolean Algebra

Derived Operators

Additional operators can be derived, such as
implication⇒ XOR ⊕ equivalence⇔

x y x ⇒ y x⊕ y x ⇔ y
0 0 1 0 1
0 1 1 1 0
1 0 0 1 0
1 1 1 0 1

Examples
Let a denote “grandpa cooks” and b “grandma is in a good mood”

I a→ b means “if Grandpa cooks, then grandma is in a good mood”

I a⊕b means “either Grandpa cooks or grandma is in a good mood”

I a↔ b means “grandpa cooks if and only if grandma is in a good mood”

18Logic: Boolean Algebra

Implication Operator

I Attention is needed as implication does not imply causality

I Rewriting is possible, i. e. x ⇒ y = (¬x)∨ y

I The statement x ⇒ y always true if x is false

x ⇒ y = (¬x)∨ y

= (¬0)∨ y

= 1∨ y = 1

Example
I Let x = “all cats bark” and y = “all cats are green”

I Then the implication x ⇒ y is always true:
“if all cats bark, then all cats are green”

I Cats commonly don’t bark, so the content of proposition y can
successfully be derived from it

19Logic: Boolean Algebra

Laws in Boolean Algebra
∧ ∨

Commutativity x ∧ y = y ∧ x x ∨ y = y ∨ x
Associativity x ∧ (y ∧ z) = (x ∧ y)∧ z x ∨ (y ∧ z) = (x ∨ y)∨ z
Identity x ∧1 = x x ∨0 = x
Annihilator x ∧0 = 0 x ∨1 = 1
Idempotence x ∧ x = x x ∨ x = x
Complementation x ∧ (¬x) = 0 x ∨ (¬x) = 1

Distributivity x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y)∧ (x ∨ z)

Absorbtion x ∧ (x ∨ y) = x
x ∨ (x ∧ y) = x

Duality ¬0 = 1

Double negation ¬(¬x) = x

De Morgan’s law ¬(x ∨ y) = (¬x)∧ (¬y)
(¬x)∨ (¬y) = ¬(x ∧ y)

20Logic: Boolean Algebra

Normal Forms

Every finite logical formula can be reduced to two normal forms:

1 Conjunctive normal form (CNF):
n∧

i=1

mi∨
j=1

¬︸︷︷︸
optional

xij

2 Disjunctive normal form (DNF):
n∨

i=1

mi∧
j=1

¬︸︷︷︸
optional

xij

Example
Let f be a logical expression as follows:

x 0 0 0 0 1 1 1 1
y 0 0 1 1 0 1 0 1
z 0 1 0 1 0 0 1 1

f(x,y,z) 0 0 0 1 1 1 1 1

CNF: (x ∨ y ∨ z)∧(x ∨ y ∨¬z)∧(x ∨¬y ∨ z)
DNF: (¬x ∧ y ∧ z)∨(x ∧¬y ∧¬z)∨(x ∧ y ∧¬z)∨(x ∧¬y ∧ z)∨(x ∧ y ∧ z)

21Logic: Boolean Algebra

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

22Logic: First-Order Logic

Relation

I A n-dimensional relation R ⊆ A1×·· ·×An is a set of ordered n-tuples

I Relations can be interpreted as functions by defining

R(x1, . . . ,xn) :=

{
1, if (x1, . . . ,xn) ∈ R,

0 otherwise

Example:
I Let A be the set of all animals, C be the set of all colors

I Let R be the relation “animal a has color c” ⊂ A×B

I Then (frog, green) ∈ A×B and it is also an element of R

I Thus, R(frog,green) = 1 (representing true)

23Logic: First-Order Logic

Quantifiers

Quantifiers express propositions about quantities (in the context of
relations)

1 Existential quantifier ∃
I Interpreted as “there exists at least one”

2 Universal quantifier ∀
I Interpreted as “for all holds”

Examples
1 ∃n ∈ N : n > 5

I Read: there exists at least one natural number n such that n is greater
than 5

I Expression is true, since e. g. 6 ∈ N and 6 > 5

2 ∀p ∈ P : p > 2
I Read: for all prime numbers p the value of p is greater than or equal to 2
I Expression is not true, since 2 is also a prime number

24Logic: First-Order Logic

Laws in First-Order Logic

Given sets A and B and relations R,S ⊆ A, as well as X ⊆ A×B

¬∀a ∈ A : R(a)⇔∃a ∈ A : ¬R(a)

∃a ∈ A∃b ∈ B : T (a,b)⇔∃b ∈ B∃a ∈ A : T (a,b)

(∀a ∈ A : R(a))∧ (∀a′ ∈ A : S(a′))⇔∀a ∈ A : R(a)∧S(a)

Caution: existential and universal quantifiers are not commutative

∀a ∈ A ∃b ∈ B T (a,b) 6 6 6⇔⇔⇔ ∃b ∈ B ∀a ∈ A T (a,b)

I A = set of all keys, B = set of all locks

I T (a,b) = key a fits into lock b
I Statements are not identical:

1 For all locks exists a key that fits into
2 There exists a key that fits into all locks

25Logic: First-Order Logic

Quantifiers

Examples
List all elements of {n ∈ N | ∃a ∈ Na < 20∧a = n2 }

I Remember 0 /∈ N
I 12 = 1 < 20, 22 = 4 < 20, 32 = 9 < 20, 42 = 16 < 20, 52 = 25 > 20

and all other squares are even larger

I Solution is {1,2,3,4}

List all elements in {n ∈ N | ∀a ∈ N with a < n : a is prime ∨a = 1}
I n = 1 has no smaller natural numbers a

I n = 2,3,4: smaller number are elements of the set {1,2,3} of which
all elements are prime

I For n = 5, there is a = 4 = 2 ·2 which is not prime

I For all n > 4, there is also a = 4 which is not prime

I Solution is {1,2,3,4}

26Logic: First-Order Logic

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

27Logic: Regular Expressions

Pattern Matching

I A regular expression defines a search pattern for pattern matching

I Useful when searching for strings with placeholders or wildcards
→ one uses meta-characters with specific means for that purpose

I Patterns specify characters, repetitions and locations within the string

I Common use cases are finding a certain string, replacing it or
extracting information

I Syntax varies slightly across programming languages

Example
I Locate all elements which contain a pattern (here: foo)

grep("foo", c("arm", "food"))

[1] 2

28Logic: Regular Expressions

Pattern Matching in R

I grep(pattern, x) searches a pattern in x
I It returns all indices of the vector which match the pattern

txt <- c("a", "ab", "acb", "accb", "acccb", "bacccc")
grep("b", txt)

[1] 2 3 4 5 6

I Argument value=TRUE returns the matching values

grep("b", txt, value=TRUE)

[1] "ab" "acb" "accb" "acccb" "bacccc"

I Alternatively, grepl returns Boolean values if an element matches

grepl("b", txt)

[1] FALSE TRUE TRUE TRUE TRUE TRUE

I Search is case-sensitive by default (off:ignore.case=TRUE)

grepl("B", txt, ignore.case=TRUE)

[1] FALSE TRUE TRUE TRUE TRUE TRUE
29Logic: Regular Expressions

Pattern Matching in R

I grepexpr(pattern, string) returns the position of a match
in a string

b appears as the second character
gregexpr("b", "abc")

[[1]]
[1] 2
attr(,"match.length")
[1] 1
attr(,"useBytes")
[1] TRUE

gregexpr("b", "abc")[[1]][1]

[1] 2

I Returns −1 if not found

gregexpr("d", "abc")[[1]][1]

[1] -1

30Logic: Regular Expressions

Regular Expressions in R

Location meta-characters
I ^ matches the starting position within a string

txt

[1] "a" "ab" "acb" "accb" "acccb" "bacccc"

grep("^b", txt, value=TRUE)

[1] "bacccc"

I $ matches the ending position of a string

grep("b$", txt, value=TRUE)

[1] "ab" "acb" "accb" "acccb"

31Logic: Regular Expressions

Regular Expressions in R

Special characters
I \n denotes a new line
I Quotation marks must be escaped via the backslash

x <- "\"string\""

Boolean OR
I A vertical bar | distinguishes alternatives

grep("gray|grey", c("gray", "grey", "different"), value=TRUE)

[1] "gray" "grey"

Grouping
I Parentheses group logical units

grep("gr(a|e)y", c("gray", "grey", "different"), value=TRUE)

[1] "gray" "grey"

32Logic: Regular Expressions

Regular Expressions in R

Quantifiers
I A dot . matches any character

grep(".", c("a", "b", "c", "\n"), value=TRUE)

[1] "a" "b" "c" "\n"

I A question mark ? denotes zero or one occurrences of the preceding
literal
→ i. e. makes the previous character optional

grep("colou?r", c("color", "colour"), value=TRUE)

[1] "color" "colour"

grep("ab?a", c("a", "aa", "aba", "abba"), value=TRUE)

[1] "aa" "aba"

can be used together with grouping
grep("a(xxx)?a", c("a", "aa", "axxxa", "axxxxa"), value=TRUE)

[1] "aa" "axxxa"

33Logic: Regular Expressions

Regular Expressions in R

Quantifiers
I A plus + indicates one or more occurrences

grep("a+", c("", "b", "a", "aa", "aaab"), value=TRUE)

[1] "a" "aa" "aaab"

I An asterisk * indicates zero or more occurrences

grep("a*", c("", "b", "a", "aa", "aaab"), value=TRUE)

[1] "" "b" "a" "aa" "aaab"

grep("xa*y", c("", "a", "xy", "xay", "xaay"), value=TRUE)

[1] "xy" "xay" "xaay"

I Alternatively, specify a fixed number of occurrences or a range

grep("x{2}", c("x", "xx", "xxx", "xxxx"), value=TRUE)

[1] "xx" "xxx" "xxxx"

grep("x{1,3}", c("x", "xx", "xxx", "xxxx"), value=TRUE)

[1] "x" "xx" "xxx" "xxxx" 34Logic: Regular Expressions

Regular Expressions in R

Symbol classes
I Bundle a set of different characters inside [and] for ease-of-use

grep("analy[sz]e", c("analyse", "analyze"), value=TRUE)

[1] "analyse" "analyze"

I Digits via [[:digit:]] or \\d or [0-9]

grep("[[:digit:]] euro", c("3 euro", "33 euro",
"three euro"),

value=TRUE)

[1] "3 euro" "33 euro"

I Lower-case letters via [[:lower:]] or [a-z]

grep("[[:lower:]]", c("", "a", "z", "A"), value=TRUE)

[1] "a" "z"

I Both letters and digits via \\w or [A-z0-9_]

35Logic: Regular Expressions

Regular Expressions in R

Symbol classes
I Any space character (tabulator, new line, space, etc.) via
[[:space:]]

grep("[[:space:]]", c("", ".", "!", "x", " ", "\n"),
value=TRUE)

[1] " " "\n"

I Any punctuation via [[:punct:]]

grep("[[:punct:]]", c("", ".", "!", "x", " ", "\n"),
value=TRUE)

[1] "." "!"

36Logic: Regular Expressions

Regular Expressions in R
Examples

cars <- rownames(mtcars)
grep("*er", cars)

[1] 7 8 9 10 11 12 13 14 17 22 29 30 31

grep("*er", cars, value=TRUE)

[1] "Duster 360" "Merc 240D" "Merc 230"
[4] "Merc 280" "Merc 280C" "Merc 450SE"
[7] "Merc 450SL" "Merc 450SLC" "Chrysler Imperial"
[10] "Dodge Challenger" "Ford Pantera L" "Ferrari Dino"
[13] "Maserati Bora"

grep("er+a", cars, value=TRUE)

[1] "Ford Pantera L" "Ferrari Dino" "Maserati Bora"

37Logic: Regular Expressions

Regular Expressions in R
Examples

grep("d+er", cars, value=TRUE)

character(0)

grep("*er{2}", cars, value=TRUE)

[1] "Ferrari Dino"

grep("^F", cars, value=TRUE)

[1] "Fiat 128" "Fiat X1-9" "Ford Pantera L" "Ferrari Dino"

grep("(t|g)er", cars, value=TRUE)

[1] "Duster 360" "Dodge Challenger" "Ford Pantera L"

38Logic: Regular Expressions

Regular Expressions in R
Examples

grep("\\dS", cars, value=TRUE)

[1] "Merc 450SE" "Merc 450SL" "Merc 450SLC"

grep("D([a-z]*)", cars, value=TRUE)

[1] "Datsun 710" "Hornet 4 Drive" "Duster 360"
[4] "Merc 240D" "Dodge Challenger" "Ferrari Dino"

grep("^d([a-z]*)", cars, value=TRUE, ignore.case=TRUE)

[1] "Datsun 710" "Duster 360" "Dodge Challenger"

39Logic: Regular Expressions

Replacements and Extraction

Replacements
I gsub(pattern, replacement, x) replaces patterns in x

gsub("x", "a", "abcxyz")

[1] "abcayz"

gsub("colou?r", "red", "Please write in colour")

[1] "Please write in red"

Extraction
I Load package gsubfn

library(gsubfn)

I strapply(x, pattern) extracts part in parentheses from any
match

strapply("3 euro", "([[:digit:]]) euro")[[1]]

[1] "3"

40Logic: Regular Expressions

Representation as Automaton

I Regular expression can be visualized as a finite automaton

I Arrows indicate allowed expressions

I Terminal states have two circles

Example: ab(a|b)+

Start 1 2

b

a b

a

3

5

4

b

b

b

a

a

a

41Logic: Regular Expressions

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

42Logic: Wrap-Up

Wrap-Up

1 Sets
I Operations: union, intersection, complement, cartesian product, power

set, cardinality
I De Morgan’s law

2 Boolean algebra
I Elements 0 and 1 with basic operators: ∧, ∨ and ¬
I Derived operators: ⇒, ⊕ and⇔
I Conjunctive and disjunctive normal forms

3 First-order logic
I Relations
I Quantifiers: ∃ and ∀

4 Regular expressions
I Search patterns for string matching, extraction of sub-strings and

replacements
I Include meta-characters, symbol classes, ORs and quantifiers
I Regular expressions be rewritten as automatons
I R: grep(...), grepl(...), grepexpr(...) and
gsub(...) 43Logic: Wrap-Up

	Sets
	Boolean Algebra
	First-Order Logic
	Regular Expressions
	Wrap-Up

