Introduction to Logic

Algorithm Design \& Software Engineering

October 26, 2016
Stefan Feuerriegel

Today's Lecture

Objectives

1 Learn about set operators
2 Understand the specification of first-order logic
3 Design and implement regular impressions in R

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

Sets

- A set is a collection of different values or variables

$$
\{1,2,4\} \text { or }\{a, b, \ldots, z\}
$$

where elements are placed in curly parenthesis

- Rule: only distinct elements matter, e.g. $\{1,1,2\}=\{2,1\}$
- Membership is indicated via " \in "

$$
a \in\{a, b, \ldots, z\} \quad \text { and } \quad 3 \notin\{a, b, \ldots, z\}
$$

- Set-builder notation with a "where" clause

$$
\left\{n^{2} \mid n \text { is an integer }\right\}
$$

- Common notation to refer to special sets, e.g.
- \mathbb{R} gives all real numbers
- \mathbb{N} denotes all positive integers (including zero)

Cardinality and Subsets

Cardinality

- Cardinality counts the number of elements

$$
|\{a, b, \ldots, z\}|=26
$$

- Sets can have an infinite cardinality, e.g. $|\mathbb{N}|=\infty$
- Empty set is given by \emptyset with $|\emptyset|=0$

Subsets

- A is a subset of B if every element of A is also in B, written $A \subseteq B$
- $A \subseteq B$ can also imply $A=B$
- $A \subset B$ if one element $x \in B$ fulfills $x \notin A$
- For all sets $X, \emptyset \subseteq X$

Set Operators

- Given sets $A=\{1,2,3\}$ and $B=\{3,4\}$ as examples
- Visualizations are called Venn diagrams

Union $X \cup Y$

- Set of all elements which are either in X or Y
- $A \cup B=\{1,2,3,4\}$

Intersection $X \cap Y$

- Set of all elements which are in both X and Y
- $A \cap B=\{3\}$

- If $X \cap Y=\emptyset$, then X and Y are called disjoint

Complement $X \backslash Y$

- Set of all elements of X which are not in Y
- $A \backslash B=\{1,2\}$

Set Operators

Exercises

Given $A=\{1,2,3,5,8\}, B=\{0,2,5,7,1,9\}$ and $C=\{-1,4,8,10\}$
1 Find $A \backslash B, B \backslash A,(A \cup B) \cap C$ and $(A \cap B) \cap C$

- $A \backslash B=\{3,8\}$
- $B \backslash A=\{0,7,9\}$
- $(A \cup B) \cap C=\{0,1,2,3,5,7,8,9\} \cap\{-1,4,8,10\}=\{8\}$
- $(A \cap B) \cap C=\{1,2,5\} \cap\{-1,4,8,10\}=\emptyset$

2 Show that $A \backslash(A \backslash B)=A \cap B$ holds for all sets A and B

- Proof

$$
\begin{aligned}
A \backslash(A \backslash B) & =A \backslash\{a \in A \mid a \notin B\} \\
& =\{a \in A \mid a \notin\{a \in A \mid a \notin B\}\} \\
& =\{a \in A \mid a \in B\} \\
& =A \cap B
\end{aligned}
$$

Cartesian Product

An n-tuple is an ordered list $\left(x_{1}, \ldots, x_{n}\right)$ of n elements; e.g. $(1,2) \neq(2,1)$
Cartesian product

- Mathematical operator " \times " creates a new set by building tuples, i.e.

$$
A \times B:=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

- Special rule $M \times \emptyset=\emptyset$ for all sets M

Examples

- Given sets $A=\{1,2\}$ and $B=\{i, j, k\}$, then

$$
A \times B=\{(1, i),(1, j),(1, k),(2, i),(2, j),(2, k)\}
$$

- The Cartesian product of sets A_{1}, \ldots, A_{n} is

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\}
$$

Cartesian Product

Exercise: show for all finite sets A and B that $|A \times B|=|A| \cdot|B|$ holds
Proof: let $|A|=m$, we then prove by induction over $|B|=n$
Base case with $n=0$: let $B=\emptyset$, then $|A \times B|=|\emptyset|=0=m \cdot 0=|A| \cdot|B|$
Inductive step:

- Assumption: $|A \times B|=|A| \times|B|$ holds for all sets B with $|B|=n$
- Show: the assumption implies the statement for all B with $|B|=n+1$
- Let $|B|=n+1$ and thus $|B| \geq 1$
- B has at least one element and we can choose an arbitrary $b \in B$
- Now we define $\tilde{B}:=B \backslash\{b\}$ and thus $B=\tilde{B} \cup\{b\}$

$$
\begin{aligned}
|A \times B| & =|A \times(\tilde{B} \cup\{b\})=|(A \times \tilde{B}) \cup(A \times\{b\})| \\
& =|A \times \tilde{B}|+|A \times\{b\}| \\
& =|A \times \tilde{B}|+m^{\text {with assumption }}= \\
& =m m+m \\
& =m+1)=|A| \cdot|B|
\end{aligned}
$$

Power Set

- Sets can be elements of sets
- Example: $\{a, b\} \in\{\{a, c\},\{a, b\}\}$, but $\{a, b\} \notin\{a, b,\{a, b, c\}\}$

Power set

- Power set $\mathscr{P}(A)$ of set A is the set of all subset of A, i.e.

$$
\mathscr{P}(A)=\{B \mid B \subseteq A\}
$$

- Cardinality $|\mathscr{P}(A)|=2^{n}$ with $n=|A|$

Example

- Given set $A=\{1,2,3\}$, then

$$
\mathscr{P}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

De Morgan's Law

Let X be a set with subsets $A, B \subseteq X$
$1 X \backslash(A \cup B)=(X \backslash A) \cap(X \backslash B)$
$2 X \backslash(A \cap B)=(X \backslash A) \cup(X \backslash B)$
Proof (of the first law)

$$
\begin{aligned}
x \in X \backslash(A \cup B) & \Leftrightarrow & x \in X \text { and } x \notin A \cup B \\
& \Leftrightarrow & x \in X \text { and } x \notin A \text { and } x \notin B \\
& \Leftrightarrow & (x \in X \text { and } x \notin A) \text { and }(x \in X \text { and } x \notin B) \\
& \Leftrightarrow & (x \in X \backslash A) \text { and }(x \in X \backslash B) \\
& \Leftrightarrow & x \in(X \backslash A) \cap(X \backslash B)
\end{aligned}
$$

Sets in R

- R has not dedicated data type for sets, instead it uses vectors

```
    x <- c(1, 2, 3)
    y <- c(3, 4)
- is.element (x, y) or operator %in% tests }x\in
is.element(3, x)
## [1] TRUE
% in% x
## [1] FALSE
```

- Equality is tested via setequal (x, y)

```
setequal (x, y)
## [1] FALSE
setequal(c(1), c(1, 1, 1))
## [1] TRUE
```


Set Operators in R

- Set operators come as functions named union (x, y), intersect (x, y) and setdiff(x, y)

```
union(x, y)
```

\#\# [1] 1234
intersect (x, y)
\#\# [1] 3
setdiff(x, y)
\#\# [1] 12
setdiff(y, x)
\#\# [1] 4

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

Boolean Algebra

- Boolean algebra is a calculus with only two elements: $\{0,1\}$
- Values can be interpreted as "true", "false" or "on", "off"
- Common in computers where " 0 " refers to 0 volts, " 1 " to a reference voltage (e.g. 5 V)
- Combinations (i.e. Cartesian products) allow to store more information; e.g. 1011000101

1 bit		2 combinations
2 bits		4 combinations
\ldots		
8 bits	(or 1 byte)	$=$
10 bits		256 combinations
\ldots		1024 combinations
32 bits (or 4 bytes)	$=$	4294967296 combinations

Boolean Operators

Boolean calculus includes 3 basic operations:

$$
\text { not } \neg \quad \text { and } \wedge \quad \text { or } \vee
$$

Truth table

x	y	$\neg x$	$x \wedge y$	$x \vee y$
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

Examples

Let a be the proposition "the car is red" and b "the car is big"

- Not: \neg a means "The car is not red"
- And: $a \wedge b$ means "the car is both red and big"
- Or: $a \vee b$ means "the car is red or big or both"

Derived Operators

Additional operators can be derived, such as implication $\Rightarrow \quad$ XOR $\oplus \quad$ equivalence \Leftrightarrow

x	y	$x \Rightarrow y$	$x \oplus y$	$x \Leftrightarrow y$
0	0	1	0	1
0	1	1	1	0
1	0	0	1	0
1	1	1	0	1

Examples

Let a denote "grandpa cooks" and b "grandma is in a good mood"

- $a \rightarrow b$ means "if Grandpa cooks, then grandma is in a good mood"
- $a \oplus b$ means "either Grandpa cooks or grandma is in a good mood"
- $a \leftrightarrow b$ means "grandpa cooks if and only if grandma is in a good mood"

Implication Operator

- Attention is needed as implication does not imply causality
- Rewriting is possible, i. e. $x \Rightarrow y=(\neg x) \vee y$
- The statement $x \Rightarrow y$ always true if x is false

$$
\begin{aligned}
x \Rightarrow y & =(\neg x) \vee y \\
& =(\neg 0) \vee y \\
& =1 \vee y=1
\end{aligned}
$$

Example

- Let $x=$ "all cats bark" and $y=$ "all cats are green"
- Then the implication $x \Rightarrow y$ is always true: "if all cats bark, then all cats are green"
- Cats commonly don't bark, so the content of proposition y can successfully be derived from it

Laws in Boolean Algebra

	\wedge		\checkmark	
Commutativity	$x \wedge y$	$=y \wedge x$	$x \vee y$	$=y \vee x$
Associativity	$x \wedge(y \wedge z)$	$=(x \wedge y) \wedge z$	$x \vee(y \wedge z)$	$=(x \vee y) \vee z$
Identity	$x \wedge 1$	$=x$	$x \vee 0$	$=x$
Annihilator	$x \wedge 0$	$=0$	$x \vee 1$	$=1$
Idempotence	$x \wedge x$	$=x$	$x \vee x$	$=x$
Complementation	$x \wedge(\neg x)$	$=0$	$x \vee(\neg x)$	$=1$

Distributivity

$$
\begin{aligned}
x \wedge(y \vee z) & =(x \wedge y) \vee(x \wedge z) \\
x \vee(y \wedge z) & =(x \vee y) \wedge(x \vee z) \\
x \wedge(x \vee y) & =x \\
x \vee(x \wedge y) & =x \\
\neg 0 & =1 \\
\neg(\neg x) & =x \\
\neg(x \vee y) & =(\neg x) \wedge(\neg y) \\
(\neg x) \vee(\neg y) & =\neg(x \wedge y)
\end{aligned}
$$

Normal Forms

Every finite logical formula can be reduced to two normal forms:
\int Conjunctive normal form (CNF): $\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_{i}} \underbrace{\neg}_{\text {optional }} x_{i j}$
2 Disjunctive normal form (DNF): $\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_{i}} \underbrace{\neg}_{\text {optional }} x_{i j}$

Example

Let f be a logical expression as follows:

x	0	0	0	0	1	1	1	1
y	0	0	1	1	0	1	0	1
\mathbf{z}	0	1	0	1	0	0	1	1
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$	0	0	0	1	1	1	1	1

CNF: $(x \vee y \vee z) \wedge(x \vee y \vee \neg z) \wedge(x \vee \neg y \vee z)$
DNF: $(\neg x \wedge y \wedge z) \vee(x \wedge \neg y \wedge \neg z) \vee(x \wedge y \wedge \neg z) \vee(x \wedge \neg y \wedge z) \vee(x \wedge y \wedge z)$

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

Relation

- A n-dimensional relation $R \subseteq A_{1} \times \cdots \times A_{n}$ is a set of ordered n-tuples
- Relations can be interpreted as functions by defining

$$
R\left(x_{1}, \ldots, x_{n}\right):= \begin{cases}1, & \text { if }\left(x_{1}, \ldots, x_{n}\right) \in R \\ 0 & \text { otherwise }\end{cases}
$$

Example:

- Let A be the set of all animals, C be the set of all colors
- Let R be the relation "animal a has color c " $\subset A \times B$
- Then (frog, green) $\in A \times B$ and it is also an element of R
- Thus, R (frog, green) $=1$ (representing true)

Quantifiers

Quantifiers express propositions about quantities (in the context of relations)
1 Existential quantifier \exists

- Interpreted as "there exists at least one"

2 Universal quantifier \forall

- Interpreted as "for all holds"

Examples

$1 \exists n \in \mathbb{N}: n>5$

- Read: there exists at least one natural number n such that n is greater than 5
- Expression is true, since e.g. $6 \in \mathbb{N}$ and $6>5$
$2 \forall p \in \mathbb{P}: p>2$
- Read: for all prime numbers p the value of p is greater than or equal to 2
- Expression is not true, since 2 is also a prime number

Laws in First-Order Logic

Given sets A and B and relations $R, S \subseteq A$, as well as $X \subseteq A \times B$

$$
\begin{aligned}
\neg \forall a \in A: R(a) & \Leftrightarrow \exists a \in A: \neg R(a) \\
\exists a \in A \exists b \in B: T(a, b) & \Leftrightarrow \exists b \in B \exists a \in A: T(a, b) \\
(\forall a \in A: R(a)) \wedge\left(\forall a^{\prime} \in A: S\left(a^{\prime}\right)\right) & \Leftrightarrow \forall a \in A: R(a) \wedge S(a)
\end{aligned}
$$

Caution: existential and universal quantifiers are not commutative

$$
\forall a \in A \quad \exists b \in B \quad T(a, b) \quad \Leftrightarrow \quad \exists b \in B \quad \forall a \in A \quad T(a, b)
$$

- $A=$ set of all keys, $B=$ set of all locks
- $T(a, b)=$ key a fits into lock b
- Statements are not identical:

1 For all locks exists a key that fits into
2 There exists a key that fits into all locks

Quantifiers

Examples

List all elements of $\left\{n \in \mathbb{N} \mid \exists a \in \mathbb{N} a<20 \wedge a=n^{2}\right\}$

- Remember $0 \notin \mathbb{N}$
- $1^{2}=1<20,2^{2}=4<20,3^{2}=9<20,4^{2}=16<20,5^{2}=25>20$ and all other squares are even larger
- Solution is $\{1,2,3,4\}$

List all elements in $\{n \in \mathbb{N} \mid \forall a \in \mathbb{N}$ with $a<n: a$ is prime $\vee a=1\}$

- $n=1$ has no smaller natural numbers a
- $n=2,3,4$: smaller number are elements of the set $\{1,2,3\}$ of which all elements are prime
- For $n=5$, there is $a=4=2 \cdot 2$ which is not prime
- For all $n>4$, there is also $a=4$ which is not prime
- Solution is $\{1,2,3,4\}$

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

Pattern Matching

- A regular expression defines a search pattern for pattern matching
- Useful when searching for strings with placeholders or wildcards \rightarrow one uses meta-characters with specific means for that purpose
- Patterns specify characters, repetitions and locations within the string
- Common use cases are finding a certain string, replacing it or extracting information
- Syntax varies slightly across programming languages

Example

- Locate all elements which contain a pattern (here: foo)

```
grep("foo", c("arm", "food"))
```

\#\# [1] 2

Pattern Matching in R

- grep (pattern, x) searches a pattern in x
- It returns all indices of the vector which match the pattern

```
txt <- c("a", "ab", "acb", "accb", "acccb", "bacccc")
grep("b", txt)
## [1] 2 3 4 5 6
```

- Argument value=TRUE returns the matching values

```
grep("b", txt, value=TRUE)
```

```
## [1] "ab"
"acb"
"accb"
"acccb"
"bacccc"
```

- Alternatively, grepl returns Boolean values if an element matches

```
grepl("b", txt)
```

\#\# [1] FALSE TRUE TRUE TRUE TRUE TRUE

- Search is case-sensitive by default (off:ignore.case=TRUE)

```
grepl("B", txt, ignore.case=TRUE)
```


Pattern Matching in R

- grepexpr (pattern, string) returns the position of a match in a string

```
# b appears as the second character
gregexpr("b", "abc")
```

```
## [[1]]
```

\#\# [1] 2
\#\# attr(,"match.length")
\#\# [1] 1
\#\# attr(,"useBytes")
\#\# [1] TRUE
gregexpr("b", "abc") [[1]][1]
\#\# [1] 2

- Returns - 1 if not found

```
gregexpr("d", "abc") [[1]][1]
## [1] -1
```


Regular Expressions in R

Location meta-characters

- ^ matches the starting position within a string
txt

```
## [1] "a"
"ab"
"acb"
"accb"
"acccb"
grep("^b", txt, value=TRUE)
## [1] "bacccc"
```

- \$ matches the ending position of a string

```
grep("b$", txt, value=TRUE)
## [1] "ab" "acb" "accb" "acccb"
```


Regular Expressions in R

Special characters

- \n denotes a new line
- Quotation marks must be escaped via the backslash
x <- "\"string\""

Boolean OR

- A vertical bar | distinguishes alternatives

```
grep("gray|grey", c("gray", "grey", "different"), value=TRUE)
## [1] "gray" "grey"
```


Grouping

- Parentheses group logical units

$$
\begin{aligned}
& \text { grep("gr(a|e)y", c("gray", "grey", "different"), value=TRUE) } \\
& \text { \#\# [1] "gray" "grey" }
\end{aligned}
$$

Regular Expressions in R

Quantifiers

- A dot . matches any character

```
grep(".", c("a", "b", "c", "\n"), value=TRUE)
## [1] "a" "b" "c" "\n"
```

- A question mark ? denotes zero or one occurrences of the preceding literal
\rightarrow i. e. makes the previous character optional

```
grep("colou?r", c("color", "colour"), value=TRUE)
## [1] "color" "colour"
grep("ab?a", c("a", "aa", "aba", "abba"), value=TRUE)
## [1] "aa" "aba"
# can be used together with grouping
grep("a(xxx) ?a", c("a", "aa", "axxxa", "axxxxa"), value=TRUE)
## [1] "aa" "axxxa"
```


Regular Expressions in R

Quantifiers

- A plus + indicates one or more occurrences

```
grep("a+", c("", "b", "a", "aa", "aaab"), value=TRUE)
## [1] "a" "aa" "aaab"
```

- An asterisk * indicates zero or more occurrences

```
grep("a*", c("", "b", "a", "aa", "aaab"), value=TRUE)
## [1] "" "b" "a" "aa" "aaab"
grep("xa*y", c("", "a", "xy", "xay", "xaay"), value=TRUE)
## [1] "xy" "xay" "xaay"
```

- Alternatively, specify a fixed number of occurrences or a range

```
grep("x{2}", c("x", "xx", "xxx", "xxxx"), value=TRUE)
## [1] "xx" "xxx" "xxxx"
grep("x{1,3}", c("x", "xx", "xxx", "xxxx"), value=TRUE)
```


Regular Expressions in R

Symbol classes

- Bundle a set of different characters inside [and] for ease-of-use

```
grep("analy[sz]e", c("analyse", "analyze"), value=TRUE)
## [1] "analyse" "analyze"
```

- Digits via [[:digit:]] or
dor [0-9]

value=TRUE)
\#\# [1] "3 euro" "33 euro"
- Lower-case letters via [[:lower:]] or [a-z]

```
grep("[[:lower:]]", c("", "a", "z", "A"), value=TRUE)
## [1] "a" "z"
```

- Both letters and digits via
w or [A-z0-9_]

Regular Expressions in R

Symbol classes

- Any space character (tabulator, new line, space, etc.) via [[:space:]]

```
grep("[[:space:]]", c("", ".", "!", "x", " ", "\n"),
    value=TRUE)
## [1] " " "\n"
```

- Any punctuation via [[:punct:]]

```
grep("[[:punct:]]", c("", ".", "!", "x", " ", "\n"),
    value=TRUE)
## [1] "." "!"
```


Regular Expressions in R

Examples

```
cars <- rownames(mtcars)
grep("*er", cars)
## [1] 7 7 8 0
grep("\starer", cars, value=TRUE)
\begin{tabular}{rrll} 
\#\# & {\([1]\)} & "Duster 360" & "Merc 240D"
\end{tabular}
grep("er+a", cars, value=TRUE)
## [1] "Ford Pantera L" "Ferrari Dino" "Maserati Bora"
```


Regular Expressions in R

Examples

```
grep("d+er", cars, value=TRUE)
## character(0)
grep("*er{2}", cars, value=TRUE)
## [1] "Ferrari Dino"
grep("^F", cars, value=TRUE)
## [1] "Fiat 128"
"Fiat X1-9"
"Ford Pantera L" "Ferrar
grep("(t|g)er", cars, value=TRUE)
## [1] "Duster 360"
"Dodge Challenger" "Ford Pantera L"
```


Regular Expressions in R

Examples

```
grep("\\dS", cars, value=TRUE)
## [1] "Merc 450SE" "Merc 450SL" "Merc 450SLC"
grep("D([a-z]*)", cars, value=TRUE)
## [1] "Datsun 710" "Hornet 4 Drive" "Duster 360"
## [4] "Merc 240D" "Dodge Challenger" "Ferrari Dino"
grep("^d([a-z]*)", cars, value=TRUE, ignore.case=TRUE)
## [1] "Datsun 710" "Duster 360" "Dodge Challenger"
```


Replacements and Extraction

Replacements

- gsub (pattern, replacement, x) replaces patterns in x

```
gsub("x", "a", "abcxyz")
```

\#\# [1] "abcayz"
gsub("colou?r", "red", "Please write in colour")
\#\# [1] "Please write in red"

Extraction

- Load package gsubfn
library (gsubfn)
- strapply(x, pattern) extracts part in parentheses from any match

```
strapply("3 euro", "([[:digit:]]) euro")[[1]]
```

\#\# [1] "3"

Representation as Automaton

- Regular expression can be visualized as a finite automaton
- Arrows indicate allowed expressions
- Terminal states have two circles

Example: $\mathrm{ab}(\mathrm{a} \mid \mathrm{b})+$

Outline

1 Sets

2 Boolean Algebra

3 First-Order Logic

4 Regular Expressions

5 Wrap-Up

Wrap-Up

1 Sets

- Operations: union, intersection, complement, cartesian product, power set, cardinality
- De Morgan's law

2 Boolean algebra

- Elements 0 and 1 with basic operators: \wedge, \vee and \neg
- Derived operators: \Rightarrow, \oplus and \Leftrightarrow
- Conjunctive and disjunctive normal forms

3 First-order logic

- Relations
- Quantifiers: \exists and \forall

4 Regular expressions

- Search patterns for string matching, extraction of sub-strings and replacements
- Include meta-characters, symbol classes, ORs and quantifiers
- Regular expressions be rewritten as automatons
- R: grep (...), grepl (...), grepexpr (...) and

