Question: Cartesian Product

- **a)** Proof that for sets A and B the equation $A \times B = B \times A$ is not always true.
- **b)** Let $A = \{0, 1, 2\}, B = \{2, 3\}, C = \{34\}, D = \{2, \{2, 3\}, \text{green}\}$ and $E = \emptyset$. Calculate the following Cartesian products:
 - $A \times B$,
 - $C \times D \times E$, and
 - $B \times C \times D$.
- **c)** Proof $(A \cup B) \times C = (A \times C) \cup (B \times C)$ for all sets A, B and C.
- **d)** Let A, B, C be sets. Proof $|(A \cup B) \times C| \le |A \times B| + |B \times C|$.

1	

	L	

1	

Question: Powerset

a) Compute
$$\mathcal{P}(A)$$
 with $A = \left\{ 1, \{a, b\}, \emptyset, 0 \right\}$.

b) Let A be a set. Proof $|\mathcal{P}(A)| = 2^{|A|}$.

1

Question: De Morgan's Law

1	

a) Proof the second law of De Morgan and depict it visually in the form of a Venn diagram, i. e. $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$ for a set X and subsets $A, B \subseteq X$.

Question: Boolean Operations

- **a)** Proof the commutative law for the operator \wedge in Boolean algebra.
- **b)** List all possible unitary Boolean operations.
- c) How many binary Boolean operations are possible?

Question: Normal Forms

a) Find the conjunctive normal form of f as defined through the truth table.

x	1	0	1	0	1	1	0	0
y	0	0	1	1	0	1	0	1
z	0	0	1	1	1	0	1	0
f(x,y,z)	0	1	1	0	1	0	1	0

- **b)** Given the conjunctive normal form $(x \lor y) \land (x \lor \neg y)$, find
 - an equivalent disjunctive normal form,
 - an equivalent minimal form (simplify as much as possible),
 - the full disjunctive normal form $(\bigvee_{i=1}^{n} \bigwedge_{j=1}^{n} (\neg) x_{ij}).$
- **c)** Find the conjunctive normal form of the following expression:

$$(((x \lor y) \land (z \lor y)) \lor (z \land y)) \land \neg (y \lor (\neg z \land x)).$$

d) Find a disjunctive normal form of the negation of

$$(x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z).$$

1

1

1

1

Question: Derived Operations

b) Show: $a \Rightarrow b = \neg b \Rightarrow \neg a$.

1

Question: Quantifiers

- **a)** Negate the following propositions:
 - \exists key \forall locks: The key fits into the lock.
 - $\forall n \in \mathbb{N} \quad \exists x \in \mathbb{Q} \quad n = x^2$

Question: Regular Expressions

- a) Visualize the expression c+(ab|ba) as an automaton.
- **b)** Write a regular expression that captures German IBAN numbers.
- **c)** Start with the following R statement:

str_vec <- c("173", "074", "432", "991", "132")</pre>

Use a regular expression that matches 173, 432 and 132. Find two different regular expressions to solve the task, but without using the operator |.

d) Consider the following string:

Use a regular expression to extract the three phone numbers listed here. Consider the different formatting symbols used and avoid matching the inccorect numbers 1234567 and 5654.

Hint: Use the regmatches function to extract the numbers given the results of gregexpr.

1	