Question: Cartesian Product

a) Proof that for sets A and B the equation $A \times B=B \times A$ is not always true.
b) Let $A=\{0,1,2\}, B=\{2,3\}, C=\{34\}, D=\{2,\{2,3\}$, green $\}$ and $E=\emptyset$. Calculate the following Cartesian products:

- $A \times B$,
- $C \times D \times E$, and
- $B \times C \times D$.
c) Proof $(A \cup B) \times C=(A \times C) \cup(B \times C)$ for all sets A, B and C.
d) Let A, B, C be sets. Proof $|(A \cup B) \times C| \leq|A \times B|+|B \times C|$.

Question: Powerset

\square
a) Compute $\mathcal{P}(A)$ with $A=\{1,\{a, b\}, \emptyset, 0\}$.
b) Let A be a set. Proof $|\mathcal{P}(A)|=2^{|A|}$.

Question: De Morgan's Law

a) Proof the second law of De Morgan and depict it visually in the form of a Venn diagram, i. e. $X \backslash(A \cap B)=(X \backslash A) \cup(X \backslash B)$ for a set X and subsets $A, B \subseteq X$.

Algorithm Design \& Software Engineering: Homework 2 (Logic)

Question: Boolean Operations

\square
a) Proof the commutative law for the operator \wedge in Boolean algebra.
b) List all possible unitary Boolean operations.
c) How many binary Boolean operations are possible?

Question: Normal Forms

a) Find the conjunctive normal form of f as defined through the truth table.

x	1	0	1	0	1	1	0	0
y	0	0	1	1	0	1	0	1
z	0	0	1	1	1	0	1	0
$f(x, y, z)$	0	1	1	0	1	0	1	0

b) Given the conjunctive normal form $(x \vee y) \wedge(x \vee \neg y)$, find

- an equivalent disjunctive normal form,
- an equivalent minimal form (simplify as much as possible),
- the full disjunctive normal form $\left(\bigvee_{i=1}^{n} \bigwedge_{j=1}^{n}(\neg) x_{i j}\right)$.
c) Find the conjunctive normal form of the following expression:

$$
(((x \vee y) \wedge(z \vee y)) \vee(z \wedge y)) \wedge \neg(y \vee(\neg z \wedge x))
$$

d) Find a disjunctive normal form of the negation of

$$
(x \vee y \vee z) \wedge(x \vee y \vee \neg z) \wedge(x \vee \neg y \vee z)
$$

Question: Derived Operations

a) Show: $(a \Rightarrow b) \wedge(b \Rightarrow a)=a \Leftrightarrow b$.
b) Show: $a \Rightarrow b=\neg b \Rightarrow \neg a$.

Question: Quantifiers

a) Negate the following propositions:

- $\quad \exists$ key \forall locks: The key fits into the lock.
- $\forall n \in \mathbb{N} \quad \exists x \in \mathbb{Q} \quad n=x^{2}$

Question: Regular Expressions

a) Visualize the expression $\mathrm{c}+(\mathrm{ab} \mid \mathrm{ba})$ as an automaton.
b) Write a regular expression that captures German IBAN numbers.
c) Start with the following R statement:

```
str_vec <- c("173", "074", "432", "991", "132")
```

Use a regular expression that matches 173, 432 and 132. Find two different regular expressions to solve the task, but without using the operator ।.
d) Consider the following string:

```
str <- paste0("Germany 0761 4231, +49177-234 123,",
    "Result, 1234567, 5654, 0160/44 22 123")
```

Use a regular expression to extract the three phone numbers listed here. Consider the different formatting symbols used and avoid matching the inccorect numbers 1234567 and 5654.

Hint: Use the regmatches function to extract the numbers given the results of gregexpr.

