Data Mining: Ensemble Learning

Business Analytics Practice
Winter Term 2015/16
Stefan Feuerriegel
Today’s Lecture

Objectives

1. Creating and pruning decision trees
2. Combining an ensemble of trees to form a Random Forest
3. Understanding the idea and usage of Boosting and AdaBoost
Outline

1. Decision Trees
2. Concepts of Ensemble Learning
3. Random Forests
4. Boosting
5. AdaBoosting
Outline

1 Decision Trees

2 Concepts of Ensemble Learning

3 Random Forests

4 Boosting

5 AdaBoosting
Decision Trees

- **Flowchart-like structure in which nodes** represent tests on attributes
- **End nodes (leaves) of each branch** represent class labels
- **Example:** Decision tree for playing tennis

```
Outlook
  Sunny
  Humidity
    High
    Normal
      No
      Yes
    Overcast
      Yes
  Rain
    Strong
    Weak
      No
      Yes

Ensembles: Decision Trees
```
Decision Trees

▶ Issues
 ▶ How deep to grow?
 ▶ How to handle continuous attributes?
 ▶ How to choose an appropriate attributes selection measure?
 ▶ How to handle data with missing attributes values?

▶ Advantages
 ▶ Simple to understand and interpret
 ▶ Requires only few observations
 ▶ Best and expected values can be determined for different scenarios

▶ Disadvantages
 ▶ Information Gain criterion is biased in favor of attributes with more levels
 ▶ Calculations become complex if values are uncertain and/or outcomes are linked
Decision Trees in R

▶ Loading required libraries `rpart`, `party` and `partykit`

```r
library(rpart)
library(party)
library(partykit)
```

▶ Accessing credit scores

```r
library(caret)
data(GermanCredit)
```

▶ Split data into index subset for training (20%) and testing (80%) instances

```r
inTrain <- runif(nrow(GermanCredit)) < 0.2
```

▶ Building a decision tree with

```r
dt <- rpart(Class ~ Duration + Amount + Age,
            method="class",
            data=GermanCredit[inTrain,])
```
Decision Trees in R

- Plot decision tree using `plot(dt)` and `text(dt)`

```r
plot(dt)
text(dt)
```
plot(as.party(dt))

Drawn Decision Trees Nicely

Node 3 (n = 8)
- Amount ≥ 3864.5 < 3864.5
- Duration < 19 ≥ 19

Node 5 (n = 9)
- Duration ≥ 25.5 < 25.5

Node 6 (n = 8)
- Amount ≥ 34.5 < 34.5

Node 4 (n = 12)
- Duration ≥ 19

Node 10 (n = 25)
- Amount < 3565 ≥ 3565
- Duration < 11.5 ≥ 11.5

Node 11 (n = 16)
- Amount ≥ 11.5 < 11.5

Node 12 (n = 20)
- Amount ≥ 1561 < 1561

Node 13 (n = 22)
- Amount < 1102.5 ≥ 1102.5

Node 14 (n = 34)
- Amount ≥ 786.5 < 786.5

Node 15 (n = 17)
- Amount ≥ 3015.5 < 3015.5

Node 16 (n = 12)
- Amount ≥ 1102.5 < 1102.5

Node 17 (n = 9)
- Age ≥ 35.5 < 35.5

Node 18 (n = 19)
- Duration ≥ 15 < 15.5

Node 19 (n = 23)
- Amount ≥ 3 < 3015.5

Node 20 (n = 9)
- Amount ≥ 3015.5 < 3015.5

Node 21 (n = 19)
- Amount ≥ 1102.5 < 1102.5

Node 22 (n = 21)
- Amount ≥ 786.5 < 786.5

Node 23 (n = 24)
- Amount ≥ 3015.5 < 3015.5

Node 24 (n = 34)
- Amount ≥ 1102.5 < 1102.5

Node 25 (n = 12)
- Amount ≥ 786.5 < 786.5

Ensembles: Decision Trees
Complexity Parameter

\texttt{printcp}(dt)

Classification tree:
\texttt{rpart(formula = Class ~ Duration + Amount + Age, data = GermanCredit[inTrain, , method = "class"])

Variables actually used in tree construction:
[1] Age Amount Duration

Root node error: 58/200 = 0.29

n= 200

CP nsplit rel error xerror xstd
1 0.051724 0 1.00000 1.00000 0.11064
2 0.034483 2 0.89655 0.96552 0.10948
3 0.012931 4 0.82759 1.08621 0.11326
4 0.010000 12 0.72414 1.13793 0.11465

- Rows show results for trees with different numbers of nodes
- **Cross-validation error** in column \texttt{xerror}
- **Complexity parameter** in column \texttt{CP}, similar to number of nodes
Pruning Decision Trees

- **Reduce tree size** by removing nodes with little predictive power
- **Aim:** Minimize cross-validation error in column \(\text{xerror} \)

```r
m <- which.min(dt$cptable[, "xerror"])
```

- **Index with smallest complexity parameter**

```r
m
```

```
## 2
## 2
```

- **Optimal number of splits**

```r
dt$cptable[m, "nsplit"]
```

```
## [1] 2
```

- **Choose corresponding complexity parameter**

```r
dt$cptable[m, "CP"]
```

```
## [1] 0.03448276
```
Pruning Decision Trees

```
p <- prune(dt, cp = dt$cptable[which.min(dt$cptable[, "xerror"]), "CP"])
plot(as.party(p))
```

Ensembles: Decision Trees
Prediction with Decision Trees

- `predict(dt, test, type="class")` predicts classes on new data `test`.

```r
pred <- predict(p, GermanCredit[-inTrain,], type="class")
pred[1:5]
```

```
##  2  3  4  5  6
## Good Good Good Good Good
## Levels: Bad Good
```

- **Output**: predicted label in 1st row out of all possible labels (2nd row).
- **Confusion matrix** via
  ```r
table(pred=pred, true=GermanCredit[-inTrain,]$Class)
```

```
# horizontal: true class; vertical: predicted class
table(pred=pred, true=GermanCredit[-inTrain,]$Class)
```

```
## true
## pred  Bad  Good
## Bad   20   28
## Good  280  671
```
Outline

1. Decision Trees
2. Concepts of Ensemble Learning
3. Random Forests
4. Boosting
5. AdaBoosting
Ensemble Learning

- Combine predictions of multiple learning algorithms → ensemble
- Often leads to a better predictive performance than a single learner
- Well-suited when small differences in the training data produce very different classifiers (e.g. decision trees)
- **Drawbacks:** increases computation time, reduces interpretability

Reasoning

- Classifiers C_1, \ldots, C_K which are independent, i.e. $\text{cor}(C_i, C_j) = 0$
- Each has an error probability of $P_i < 0.5$ on the training data
- Then an ensemble of classifiers should have an error probability lower than each individual P_i
Example: Ensemble Learning

- Given K classifiers, each with the same error probability $P_{\varepsilon} = 0.3$
- Probability that exactly L classifiers make an error is

\[
\binom{K}{L} P_{\varepsilon}^L (1 - P_{\varepsilon})^{K-L}
\]

- For example, the probability of 10+ classifiers making an error is 0.05
- Only if $P_{\varepsilon} > 0.5$, the error rate of the ensemble increases.
Ensemble Learning

→ Various methods exist for ensemble learning

Constructing ensembles: methods for obtaining a set of classifiers

▶ **Bagging** (also named **Bootstrap Aggregation**)
▶ **Random Forest**
▶ **Cross-validation** (covered as part of resampling)

→ Instead of different classifiers, train same classifier on different data
→ Since training data is expensive, reuse data by subsampling

Combining classifiers: methods for combining different classifiers

▶ **Stacking**
▶ **Bayesian Model Averaging**
▶ **Boosting**
▶ **AdaBoost**
Bagging: Bootstrap Aggregation

- **Meta strategy** design to accuracy of machine learning algorithms
- **Improvements for unstable procedures**
 → Neural networks, trees and linear regression with subset selection, rule learning (opposed to k-NN, linear regression, SVM)
- **Idea**: Reuse the same training algorithm several times on different subsets of the training data
- When classifier needs random initialization (e.g. k-means), very these across each run
Bagging: Bootstrap Aggregation

1. **Step 1:** Create separate datasets
2. **Step 2:** Train multiple classifiers
3. **Step 3:** Combine classifiers

Original training data

Diagram:**
- \(D \)
- \(D_1 \) to \(D_K \)
- \(C_1 \) to \(C_K \)

Ensembles: Bagging
Bagging: Bootstrap Aggregation

Algorithm

- Given training set D of size N
- Bagging generates new training sets D_i of size M by sampling with replacement from D
- Some observations may be repeated in each D_i
- If $M = N$, then on average 63.2% (Breiman, 1996) of the original training dataset D is represented, the rest are duplicates
- Afterwards train classifier on each C_i separately
Outline

1. Decision Trees
2. Concepts of Ensemble Learning
3. Random Forests
4. Boosting
5. AdaBoosting
Random Forests

- Random Forests are an **ensemble learning** method for classification and regression
- It **combines multiple individual decision trees** by means of bagging
- Overcomes the problem of overfitting decision trees
Random Forest: Algorithm

1. Create many decision trees by bagging
2. Inject randomness into decision trees
 a. Tree grows to maximum size and is left unpruned
 ▶ Deliberate overfitting: i.e. each tree is a good model on its own
 b. Each split is based on randomly selected subset of attributes
 ▶ Reduces correlation between different trees
 ▶ Otherwise, many trees would just select the very strong predictors
3. Ensemble trees (i.e. the random forest) vote on categories by majority
Random Forest: Algorithm

1. Split the training data into K bootstrap samples by drawing samples from training data with replacement.
2. Estimate individual trees t_i to the samples.
3. Every regression tree predicts a value for unseen data.
4. Averaging those predictions by

$$
\hat{\mathbf{y}} = \frac{1}{K} \sum_{i=1}^{K} t_i(\mathbf{x})
$$

with $\hat{\mathbf{y}}$ as the response vector and $\mathbf{x} = [x_1, \ldots, x_N]^T \in X$ as the input parameters.
Advantages and Limitations

- Increasing the number of trees tends to decrease the variance of the model without increasing the bias
- Averaging reveals real structure that persists across datasets
- Noisy signals of individual trees cancel out

Advantages
- Simple algorithm that learns non-linearity
- Good performance in practice
- Fast training algorithm
- Resistant to overfitting

Limitations
- High memory consumption during tree construction
- Little performance gain from large training data
Random Forests in R

- Load required library `randomForest`
  ```r
  library(randomForest)
  ```
- Load dataset with credit scores
  ```r
  library(caret)
  data(GermanCredit)
  ```
- Split data into index subset for training (20 %) and testing (80 %) instances
  ```r
  inTrain <- runif(nrow(GermanCredit)) < 0.2
  ```
Random Forests in R

- **Learn random forest** on training data with `randomForest(...)`
  ```r
  rf <- randomForest(Class ~ ., 
                     data=GermanCredit[inTrain,], 
                     ntree=100)
  ```

- **Options to control behavior**
 - `ntree` controls the **number of trees** (default: 500)
 - `mtry` gives number of variables to choose from at each node
 - `na.action` specifies how to handle missing values
 - `importance=TRUE` calculates variable importance metric
Random Forest in R

- Plot estimated error across the number of decision trees

```r
plot(rf)
```

Dotted lines represent corresponding error of classes and solid black line represents overall error
Random Forest in R

- Calculate **confusion matrix**

```r
rf$confusion
```

```r
## Bad Good class.error
## Bad 12 46 0.79310345
## Good 10 132 0.07042254
```

- **Predict credit scores** for testing instances

```r
pred <- predict(rf, newdata=GermanCredit[-inTrain,])
table(true=true=GermanCredit$Class[-inTrain])
```
Variable Importance

▶ Coefficients normally tell the effect, but not its relevance
▶ Frequency and position of where variables appear in decision trees can be used for measuring variable importance
▶ Computed based on the corresponding reduction of accuracy when the predictor of interest is removed
▶ Variable importance is

\[VI^{(t)}(x) = \frac{\sum_{i=1}^{K} I(y_i = \hat{y}^{(t)}_i)}{K} - \frac{\sum_{i=1}^{K} I(y_i = \hat{y}^{(t)}_i \text{ learned from permuted } x)}{K} \]

for tree \(t \), with \(y_i \) being the true class and \(\hat{y}^{(t)}_i \) the predicted class
▶ A frequent alternative is the Gini importance index
Variable Importance in R

- Learn random forest and **enable the calculation of variable importance metrics via importance=TRUE**

```r
rf2 <- randomForest(Class ~ .,
                      data=GermanCredit, #with full dataset
                      ntree=100,
                      importance=TRUE)
```
Variable Importance in R

▶ **Plot variable importance** via `varImpPlot(rf, ...)`

```
varImpPlot(rf2, type=1, n.var=5)
```

▶ **type** choose the importance metric (\(\approx 1 \) is the mean decrease in accuracy if the variable would be randomly permuted)

▶ **n.var** denotes number of variables
Outline

1. Decision Trees
2. Concepts of Ensemble Learning
3. Random Forests
4. Boosting
5. AdaBoosting
Boosting

► Combine multiple classifiers to improve classification accuracy
► Works together with many different types of classifiers
► None of the classifier needs extremely good, only better than chance
 → Extreme case: decision stumps

\[y(x) = \begin{cases}
1, & x_i \geq \theta \\
0, & \text{otherwise}
\end{cases} \]

► Idea: train classifiers on a subset of the training data that is most informative given the current classifiers
► Yields sequential classifier selection
Boosting

High-level algorithm

1. Fit a simple model to a subsample of the data
2. Identify misclassified observations, i.e. that are hard to predict
3. Focus subsequent learners on these samples and get them right
4. Combine weak learners to form a complex predictor

Application: spam filtering

- First classifier: distinguish between emails from contacts and others
- Subsequent classifiers: focus on examples wrongly classified as spam (i.e. emails from others) and find words/phrases appearing in spam
- Combine to final classifier that predicts spam accurately
Boosting: Example

Given training data D from which we sample without replacement

1. Sample $N_1 < N$ training examples D_1 from D
 ▸ Train weak classifier C_1 on D_1

2. Sample $N_2 < N$ training examples D_2 from D, half of which were misclassified by C_1
 ▸ Train weak classifier C_2 on D_2

3. Identify all data D_3 in D on which C_1 and C_2 disagree
 ▸ Train weak classifier C_3 on D_3
Boosting: Example

4 Combine C_1, C_2, C_3 to get final classifier C by majority vote
 ▶ E.g. on the misclassified red point, C_1 voted for red but C_2 and C_3 voted for blue

Optimal number of samples N_i

▶ Reasonable guess $N_1 = N_2 = N_3 \Rightarrow \frac{N_1}{3}$ but problematic
 ▶ Simple problem: C_1 explains most of the data and N_2 and N_3 are small
 ▶ Hard problem: C_1 explains a small part and N_2 is large
▶ Solution: run boosting procedure several times and adjust N_1
Boosting in R

- **Load the required packages** mboost

```r
library(mboost)
```

- **Fit a generalized linear model via glmboost(...)**

```r
m.boost <- glmboost(Class ~ Amount + Duration + Personal.Female.Single,
                     family=Binomial(), # needed for classification
data=GermanCredit)

coeff(m.boost)
```

```r
## (Intercept) Amount Duration
## 4.104949e-01 -1.144369e-05 -1.703911e-02
## attr("offset")
## [1] 0.4236489
```

- **Different from the normal glm(...)** routine, the boosted version inherently performs variable selection
Boosting in R: Convergence Plot

- **Partial effects** show how estimated coefficients evolve across iterations
- **Plot convergence of selected coefficients**

```r
plot(m.boost, ylim=range(coef(m.boost,
    which=c("Amount", "Duration"))))
```

```r
glmboost.formula(formula = Class ~ Amount + Duration + Personal.Female.Single,
    data = GermanCredit, family = Binomial())
```

- Ensembles: Boosting
Boosting in R

- Main parameter for tuning is **number of iterations** `mstop`
- Use **cross-validated estimates** of empirical risk to find optimal number
 - Default is 25-fold bootstrapp cross-validation

```r
cv.boost <- cvrisk(m.boost)
mstop(cv.boost) # optimal no. of iterations to prevent overfitting
## [1] 16

plot(cv.boost, main="Cross-validated estimates of empirical risk")
```

Cross–validated estimates of empirical risk
Boosting in R

Alternative: fit generalized additive model via component-wise boosting

```r
m.boost <- gamboost(Class ~ Amount + Duration,
                    family=Binomial(), # needed for classification
                    data=GermanCredit)

m.boost
```

```
## Model-based Boosting
## Call:
## gamboost(formula = Class ~ Amount + Duration, data = GermanCredit, 
##          family = Binomial())
##
## Negative Binomial Likelihood
## Loss function: {
##   f <- pmin(abs(f), 36) * sign(f)
##   p <- exp(f)/(exp(f) + exp(-f))
##   y <- (y + 1)/2
##   -y * log(p) - (1 - y) * log(1 - p)
## }
## Number of boosting iterations: mstop = 100
## Step size: 0.1
## Offset: 0.4236489
## Number of baselearners: 2
```

Ensembles: Boosting
Outline

1 Decision Trees
2 Concepts of Ensemble Learning
3 Random Forests
4 Boosting
5 AdaBoosting
AdaBoosting

Instead of resampling, reweight misclassified training examples

Illustration

Weak classifier C_1 Weak classifier C_2 Weak classifier C_3

\Rightarrow Combine weak classifiers C_1, C_2, C_3
into final classifier by majority vote
AdaBoost

Benefits

▶ Simple combination of multiple classifiers
▶ Easy implementation
▶ Different types of classifiers can be used
▶ Commonly used across many domains

Limitations

▶ Sensitive to misclassified points in training data
AdaBoost in R

- Load required package `ada`

```R
library(ada)
```

- Fit AdaBoost model on training data with `ada(..., iter)` given a fixed number `iter` of iterations

```R
m.ada <- ada(Class ~ ., 
              data=GermanCredit[inTrain,], 
              iter=50)
```

- Evaluate on test data `test.x` with response `test.y`

```R
m.ada.test <- addtest(m.ada, 
                      test.x=GermanCredit[-inTrain,], 
                      test.y=GermanCredit$Class[-inTrain])
```
AdaBoost in R

```r
m.ada.test

## Call:
## ada(Class ~ ., data = GermanCredit[inTrain, ], iter = 50)
##
## Loss: exponential Method: discrete 
## Iteration: 50
##
## Final Confusion Matrix for Data:
## Final Prediction
## True value Bad Good
## Bad 33 25
## Good 2 140
##
## Train Error: 0.135

## Out-Of-Bag Error: 0.18 iteration= 50
##
## Additional Estimates of number of iterations:
##
## train.err1 train.kap1 test.errs2 test.kaps2
## 36 36 43 37
```

Ensembles: AdaBoosting
AdaBoost in R

Plot error on training and testing data via `plot(m, test=TRUE)` for model \(m \)

```r
plot(m.ada.test, test=TRUE)
```

![Training And Testing Error](image)

Ensembles: AdaBoosting
AdaBoost in R

Similarly as with random forest, `varplot(...)` plots the importance for the first variables.

```r
varplot(m.ada.test, max.var.show=5)  # first 5 variables
```

![Variable Importance Plot](image)

Ensembles: AdaBoosting
Summary

Decision Trees

▶ Highly visual tool for decision support, though the risk of overfitting

Ensemble Learning: Random Forest, Boosting and AdaBoost

▶ Idea: combine an ensemble of learners to improve performance
▶ Random forest combines independent decision trees
▶ **Boosting resamples** the training data, whereas **AdaBoost reweights** training data
 → focus subsequent learn from misclassifications
▶ Combined weak learners usually **vote by majority** on new data