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Today’s Lecture

Objectives

1 Creating and pruning decision trees

2 Combining an ensemble of trees to form a Random Forest

3 Understanding the idea and usage of Boosting and AdaBoost
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Decision Trees

I Flowchart-like structure in which nodes represent tests on attributes

I End nodes (leaves) of each branch represent class labels

I Example: Decision tree for playing tennis
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Decision Trees

I Issues
I How deep to grow?
I How to handle continuous attributes?
I How to choose an appropriate attributes selection measure?
I How to handle data with missing attributes values?

I Advantages
I Simple to understand and interpret
I Requires only few observations
I Best and expected values can be determined for different scenarios

I Disadvantages
I Information Gain criterion is biased in favor of attributes with more levels
I Calculations become complex if values are uncertain and/or outcomes

are linked
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Decision Trees in R

I Loading required libraries rpart, party and partykit

library(rpart)
library(party)
library(partykit)

I Accessing credit scores

library(caret)
data(GermanCredit)

I Split data into index subset for training (20 %) and testing (80 %)
instances

inTrain <- runif(nrow(GermanCredit)) < 0.2

I Building a decision tree with
rpart(formula, method="class", data=d)

dt <- rpart(Class ~ Duration + Amount + Age,
method="class", data=GermanCredit[inTrain,])
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Decision Trees in R

I Plot decision tree using plot(dt) and text(dt)

plot(dt)
text(dt)
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Drawing Decision Trees Nicely

plot(as.party(dt))
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Complexity Parameter

printcp(dt)

##
## Classification tree:
## rpart(formula = Class ~ Duration + Amount + Age, data = GermanCredit[inTrain,
## ], method = "class")
##
## Variables actually used in tree construction:
## [1] Age Amount Duration
##
## Root node error: 58/200 = 0.29
##
## n= 200
##
## CP nsplit rel error xerror xstd
## 1 0.051724 0 1.00000 1.00000 0.11064
## 2 0.034483 2 0.89655 0.96552 0.10948
## 3 0.012931 4 0.82759 1.08621 0.11326
## 4 0.010000 12 0.72414 1.13793 0.11465

I Rows show results for trees with different numbers of nodes

I Cross-validation error in column xerror

I Complexity parameter in column CP, similar to number of nodes
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Pruning Decision Trees

I Reduce tree size by removing nodes with little predictive power
I Aim: Minimize cross-validation error in column xerror

m <- which.min(dt$cptable[, "xerror"])

I Index with smallest complexity parameter
m

## 2
## 2

I Optimal number of splits

dt$cptable[m, "nsplit"]

## [1] 2

I Choose corresponding complexity parameter

dt$cptable[m, "CP"]

## [1] 0.03448276
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Pruning Decision Trees

p <- prune(dt, cp = dt$cptable[which.min(dt$cptable[, "xerror"]), "CP"])
plot(as.party(p))
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Prediction with Decision Trees

I predict(dt, test, type="class") predicts classes on
new data test

pred <- predict(p, GermanCredit[-inTrain,], type="class")
pred[1:5]

## 2 3 4 5 6
## Good Good Good Good Good
## Levels: Bad Good

I Output: predicted label in 1st row out of all possible labels (2nd row)
I Confusion matrix via
table(pred=pred_classes, true=true_classes)

# horizontal: true class; vertical: predicted class
table(pred=pred, true=GermanCredit[-inTrain,]$Class)

## true
## pred Bad Good
## Bad 20 28
## Good 280 671
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Ensemble Learning

I Combine predictions of multiple learning algorithms→ ensemble

I Often leads to a better predictive performance than a single learner

I Well-suited when small differences in the training data produce very
different classifiers (e. g. decision trees)

I Drawbacks: increases computation time, reduces interpretability

Reasoning
I Classifiers C1, . . . ,CK which are independent, i. e. cor(Ci ,Cj) = 0

I Each has an error probability of Pi < 0.5 on the training data

I Then an ensemble of classifiers should have an error probability lower
than each individual Pi
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Example: Ensemble Learning

I Given K classifiers, each with the same error probability Pε = 0.3

I Probability that exactly L classifiers make an error is(
K
L

)
PL

ε (1−Pε)
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I For example, the probability of 10+ classifiers making an error is 0.05

I Only if Pε > 0.5, the error rate of the ensemble increases
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Ensemble Learning

→ Various methods exist for ensemble learning

Constructing ensembles: methods for obtaining a set of classifiers

I Bagging (also named Bootstrap Aggregation)

I Random Forest

I Cross-validation (covered as part of resampling)

→ Instead of different classifiers, train same classifier on different data
→ Since training data is expensive, reuse data by subsampling

Combining classifiers: methods for combining different classifiers

I Stacking

I Bayesian Model Averaging

I Boosting

I AdaBoost
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Bagging: Bootstrap Aggregation

I Meta strategy design to accuracy of machine learning algorithms

I Improvements for unstable procedures
→ Neural networks, trees and linear regression with subset selection,
rule learning (opposed to k -NN, linear regression, SVM)

I Idea: Reuse the same training algorithm several times on different
subsets of the training data

I When classifier needs random initialization (e. g. k -means), very these
across each run

18Ensembles: Bagging



Bagging: Bootstrap Aggregation
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Bagging: Bootstrap Aggregation

Algorithm
I Given training set D of size N

I Bagging generates new training sets Di of size M by sampling with
replacement from D

I Some observations may be repeated in each Di

I If M = N, then on average 63.2% (Breiman, 1996) of the original
training dataset D is represented, the rest are duplicates

I Afterwards train classifier on each Ci separately

20Ensembles: Bagging



Outline

1 Decision Trees

2 Concepts of Ensemble Learning

3 Random Forests

4 Boosting

5 AdaBoosting

21Ensembles: Random Forests



Random Forests

I Random Forests are an ensemble learning method for classification
and regression

I It combines multiple individual decision trees by means of bagging

I Overcomes the problem of overfitting decision trees
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Random Forest: Algorithm

1 Create many decision trees by bagging
2 Inject randomness into decision trees

a. Tree grows to maximum size and is left unpruned
I Deliberate overfitting: i. e. each tree is a good model on its own

b. Each split is based on randomly selected subset of attributes
I Reduces correlation between different trees
I Otherwise, many trees would just select the very strong predictors

3 Ensemble trees (i. e. the random forest) vote on categories by majority

...

+

y

x x x
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Random Forest: Algorithm

1 Split the training data into K bootstrap samples by drawing samples
from training data with replacement

2 Estimate individual trees ti to the samples

3 Every regression tree predicts a value for unseen data

4 Averaging those predictions by

ŷ =
1
K

K

∑
i=1

ti(x)

with ŷ as the response vector and x = [x1, . . . ,xN ]
T ∈ X as the input

parameters.
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Advantages and Limitations

I Increasing the number of trees tends to decease the variance of the
model without increasing the bias

I Averaging reveals real structure that persists across datasets

I Noisy signals of individual trees cancel out

Advantages
I Simple algorithm that

learns non-linearity

I Good performance in
practice

I Fast training algorithm

I Resistant to overfitting

Limitations
I High memory consumption

during tree construction

I Little performance gain
from large training data
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Random Forests in R

I Load required library randomForest

library(randomForest)

I Load dataset with credit scores

library(caret)
data(GermanCredit)

I Split data into index subset for training (20 %) and testing (80 %)
instances

inTrain <- runif(nrow(GermanCredit)) < 0.2
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Random Forests in R

I Learn random forest on training data with randomForest(...)

rf <- randomForest(Class ~ .,
data=GermanCredit[inTrain,],
ntree=100)

I Options to control behavior
I ntree controls the number of trees (default: 500)
I mtry gives number of variables to choose from at each node
I na.action specifies how to handle missing values
I importance=TRUE calculates variable importance metric
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Random Forest in R

I Plot estimated error across the number of decision trees

plot(rf)
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Random Forest in R

I Calculate confusion matrix

rf$confusion

## Bad Good class.error
## Bad 12 46 0.79310345
## Good 10 132 0.07042254

I Predict credit scores for testing instances

pred <- predict(rf, newdata=GermanCredit[-inTrain,])
table(pred=pred, true=GermanCredit$Class[-inTrain])

## true
## pred Bad Good
## Bad 97 29
## Good 203 670
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Variable Importance

I Coefficients normally tell the effect, but not its relevance

I Frequency and position of where variables appear in decision trees
can be used for measuring variable importance

I Computed based on the corresponding reduction of accuracy when
the predictor of interest is removed

I Variable importance is

VI(t)(x)=
∑

K
i=1 I(yi = ŷ(t)

i )

K
−∑

K
i=1 I(yi = ŷ(t)

i learned from permuted x)
K

for tree t , with yi being the true class and ŷ(t)
i the predicted class

I A frequent alternative is the Gini importance index
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Variable Importance in R

I Learn random forest and enable the calculation of variable importance
metrics via importance=TRUE

rf2 <- randomForest(Class ~ .,
data=GermanCredit, #with full dataset
ntree=100,
importance=TRUE)
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Variable Importance in R

I Plot variable importance via varImpPlot(rf, ...)

varImpPlot(rf2, type=1, n.var=5)
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I type choose the importance metric (= 1 is the mean decrease in
accuracy if the variable would be randomly permuted)

I n.var denotes number of variables
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Boosting

I Combine multiple classifiers to improve classification accuracy

I Works together with many different types of classifiers

I None of the classifier needs extremely good, only better than chance
→ Extreme case: decision stumps

y(x) =

{
1, xi ≥ θ

0, otherwise

I Idea: train classifiers on a subset of the training data that is most
informative given the current classifiers

I Yields sequential classifier selection

34Ensembles: Boosting



Boosting

High-level algorithm

1 Fit a simple model to a subsample of the data

2 Identify misclassified observations, i. e. that are hard to predict

3 Focus subsequent learners on these samples and get them right

4 Combine weak learners to form a complex predictor

Application: spam filtering

I First classifier: distinguish between emails from contacts and others

I Subsequent classifiers: focus on examples wrongly classified as spam
(i. e. emails from others) and find words/phrases appearing in spam

I Combine to final classifier that predicts spam accurately
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Boosting: Example

Given training data D from which we
sample without replacement

1 Sample N1 < N training examples
D1 from D

I Train weak classifier C1 on D1

2 Sample N2 < N training examples
D2 from D, half of which were
misclassified by C1

I Train weak classifier C2 on D2

3 Identify all data D3 in D on which
C1 and C2 disagree

I Train weak classifier C3 on D3
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Boosting: Example

4 Combine C1, C2, C3 to get final
classifier C by majority vote

I E. g. on the missclassified red
point, C1 voted for red but C2

and C3 voted for blue

Optimal number of samples Ni

I Reasonable guess N1 = N2 = N3⇒
N1

3
but problematic

I Simple problem: C1 explains most of the data and N2 and N3 are small
I Hard problem: C1 explains a small part and N2 is large

I Solution: run boosting procedure several times and adjust N1
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Boosting in R

I Load the required packages mboost

library(mboost)

I Fit a generalized linear model via glmboost(...)
m.boost <- glmboost(Class ~ Amount + Duration

+ Personal.Female.Single,
family=Binomial(), # needed for classification
data=GermanCredit)

coef(m.boost)

## (Intercept) Amount Duration
## 4.104949e-01 -1.144369e-05 -1.703911e-02
## attr(,"offset")
## [1] 0.4236489

I Different from the normal glm(...) routine, the boosted version
inherently performs variable selection
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Boosting in R: Convergence Plot

I Partial effects show how estimated coefficients evolve across iterations
I Plot convergence of selected coefficients

plot(m.boost, ylim=range(coef(m.boost,
which=c("Amount", "Duration"))))
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Boosting in R

I Main parameter for tuning is number of iterations mstop
I Use cross-validated estimates of empirical risk to find optimal number
→ Default is 25-fold bootstrapp cross-validation
cv.boost <- cvrisk(m.boost)
mstop(cv.boost) # optimal no. of iterations to prevent overfitting

## [1] 16

plot(cv.boost, main="Cross-validated estimates of empirical risk")
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Boosting in R
Alternative: fit generalized additive model via component-wise boosting

m.boost <- gamboost(Class ~ Amount + Duration,
family=Binomial(), # needed for classification
data=GermanCredit)

m.boost

##
## Model-based Boosting
##
## Call:
## gamboost(formula = Class ~ Amount + Duration, data = GermanCredit, family = Binomial())
##
##
## Negative Binomial Likelihood
##
## Loss function: {
## f <- pmin(abs(f), 36) * sign(f)
## p <- exp(f)/(exp(f) + exp(-f))
## y <- (y + 1)/2
## -y * log(p) - (1 - y) * log(1 - p)
## }
##
##
## Number of boosting iterations: mstop = 100
## Step size: 0.1
## Offset: 0.4236489
## Number of baselearners: 2
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AdaBoosting

Instead of resampling, reweight misclassified training examples

Illustration

Weak classifier C1 Weak classifier C2 Weak classifier C3

⇒ Combine weak classifiers C1, C2, C3

into final classifier by majority vote
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AdaBoost

Benefits
I Simple combination of

multiple classifiers

I Easy implementation

I Different types of classifiers
can be used

I Commonly in used across
many domains

Limitations
I Sensitive to misclassified

points in training data
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AdaBoost in R

I Load required package ada

library(ada)

I Fit AdaBoost model on training data with ada(..., iter) given a
fixed number iter of iterations

m.ada <- ada(Class ~ .,
data=GermanCredit[inTrain,],
iter=50)

I Evaluate on test data test.x with response test.y

m.ada.test <- addtest(m.ada,
test.x=GermanCredit[-inTrain,],
test.y=GermanCredit$Class[-inTrain])
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AdaBoost in R

m.ada.test

## Call:
## ada(Class ~ ., data = GermanCredit[inTrain, ], iter = 50)
##
## Loss: exponential Method: discrete Iteration: 50
##
## Final Confusion Matrix for Data:
## Final Prediction
## True value Bad Good
## Bad 33 25
## Good 2 140
##
## Train Error: 0.135
##
## Out-Of-Bag Error: 0.18 iteration= 50
##
## Additional Estimates of number of iterations:
##
## train.err1 train.kap1 test.errs2 test.kaps2
## 36 36 43 37
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AdaBoost in R
Plot error on training and testing data via plot(m, test=TRUE) for
model m

plot(m.ada.test, test=TRUE)
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AdaBoost in R
Similarly as with random forest, varplot(...) plots the importance for
the first variables

varplot(m.ada.test, max.var.show=5) # first 5 variables
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Summary

Decision Trees
I Highly visual tool for decision support, though the risk of overfitting

Ensemble Learning: Random Forest, Boosting and AdaBoost
I Idea: combine an ensemble of learners to improve performance

I Random forest combines independent decision trees

I Boosting resamples the training data, whereas AdaBoost reweights
training data
→ focus subsequent learn from misclassifications

I Combined weak learners usually vote by majority on new data
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