
Reinforcement Learning
Business Analytics Practice

Winter Term 2015/16
Nicolas Pröllochs and Stefan Feuerriegel

Today’s Lecture

Objectives

1 Grasp an understanding of Markov decision processes

2 Understand the concept of reinforcement learning

3 Apply reinforcement learning in R

4 Distinguish pros/cons of different reinforcement learning algorithms

2Reinforcement Learning

Outline

1 Reinforcement Learning

2 Markov Decision Process

3 Learning Algorithms

4 Q-Learning in R

5 Wrap-Up

3Reinforcement Learning

Outline

1 Reinforcement Learning

2 Markov Decision Process

3 Learning Algorithms

4 Q-Learning in R

5 Wrap-Up

4Reinforcement Learning: Reinforcement Learning

Branches of Machine Learning

Supervised Learning
I Learns from pairs of input and desired

outcome (i. e. labels)

Unsupervised Learning
I Tries to find hidden structure in

unlabeled data

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Reinforcement Learning
I Learning from interacting with the environment

I No need for pairs of input and correct outcome

I Feedback restricted to a reward signal

I Mimics human-like learning in actual environments

5Reinforcement Learning: Reinforcement Learning

Example: Backgammon

Reinforcement learning can reach a level similar to the top three human
players in backgammon

Learning task

I Select best move at arbitrary board states
→ i. e. with highest probability to win

Training signal

I Win or loss of overall game

Training

I 300,000 games played against the system itself

Algorithm

I Reinforcement learning (plus neural network)

→ Tesauro (1995): Temporal Difference Learning and TD-Gammon. In: Comm. of the ACM, 38:3, pp. 58–68

6Reinforcement Learning: Reinforcement Learning

Reinforcement Learning

I An agent interacts with its
environment

I Agent takes actions that affect
the state of the environment

I Feedback is limited to a reward
signal that indicates how well the
agent is performing

I Goal: improve the behavior
given only this limited feedback

Observation Action

Reward

Examples
I Defeat the world champions at backgammon or Go

I Manage an investment portfolio

I Make a humanoid robot walk

7Reinforcement Learning: Reinforcement Learning

Agent and Environment

Agent

Environment

State st Reward rt

Action at

State st+1 Reward rt+1

At each step t , the agent:

I Executes action at

I Receives observation st

I Receives scalar reward rt

The environment:

I Changes upon action at

I Emits observation st+1

I Emits scalar reward rt+1

I Time step t is incremented after each iteration

8Reinforcement Learning: Reinforcement Learning

Agent and Environment

Example

1 ENVIRONMENT I You are in state 3 with 4 possible actions

2 AGENT I I’ll take action 2

3 ENVIRONMENT I You received a reward of 5 units

I You are in state 1 with 2 possible actions
...

...
...

Formalization

... st 1 ...st st+1

at 1 at at+1

 rt+1 rtrt 1

9Reinforcement Learning: Reinforcement Learning

Reinforcement Learning Problem

Finding an optimal behavior
I Learn optimal behavior π based on past actions

I Maximize the expected cumulative reward over time

Challenges
I Feedback is delayed, not instantaneous

I Agent must reason about the long-term consequences of its actions

Illustration
I In order to maximize one’s future income, one has to study now

I However, the immediate monetary reward from this might be negative

⇒ How do we learn optimal behavior?

10Reinforcement Learning: Reinforcement Learning

Trial-and-Error Learning

The agent should discover optimal behavior via trial-and-error learning
1 Exploration

I Try new or non-optimal actions to learn their reward
I Gain a better understanding of the environment

2 Exploitation
I Use current knowledge
I This might not be optimal yet, but should deviate only slightly

Examples
1 Restaurant selection

I Exploitation: go to your favorite restaurant
I Exploration: try a new restaurant

2 Game playing
I Exploitation: play the move you believe is best
I Exploration: play an experimental move

11Reinforcement Learning: Reinforcement Learning

ε-Greedy Action Selection

Idea
I Provide a simple heuristic to choose between exploitation and

exploration
I Implemented via a random number 0≤ ε ≤ 1

I With probability ε , try a random action
I With probability 1− ε , choose the current best

st

at

at

Random action
ε

1 ε
Greedy action

I Typical choice is e. g. ε = 0.1

I Other variants decrease this value over time
→ i. e. agent gains confidence and thus needs less exploration

12Reinforcement Learning: Reinforcement Learning

Outline

1 Reinforcement Learning

2 Markov Decision Process

3 Learning Algorithms

4 Q-Learning in R

5 Wrap-Up

13Reinforcement Learning: MDP

Markov Decision Process

I A Markov decision process (MDP) specifies a setup for reinforcement
learning

I MDPs allow to model decision making in situations where outcomes
are partly random and partly under the control of a decision maker

Definition
1 A Markov Decision Process is a 4-tuple (S,A,R,T) with

I A set of possible world states S
I A set of possible actions A
I A real-valued reward function R
I Transition probabilities T

2 A MDP must fulfill the so-called Markov property
I The effects of an action taken in a state depend only on that state and

not on the prior history

14Reinforcement Learning: MDP

Markov Decision Process

State
I A state st is a representation of the environment at time step t

I Can be directly observable to the agent or hidden

Actions
I At each state, the agent is able to perform an action at that affects the

subsequent state of the environment st+1

I Actions can be any decisions which one wants to learn

Transition probabilities
I Given a current state s, a possible subsequent state s′ and an action a

I The transition probability T a
ss′ from s to s′ is defined by

T a
ss′ = P

[
st+1 = s′ | st = s,at = a

]

15Reinforcement Learning: MDP

Rewards

I A reward rt+1 is a scalar feedback signal emitted by the environment

I Indicates how well agent is performing when reaching step t +1

I The expected reward Ra
ss′ when moving from state s to s′ via action a

is given by

Ra
ss′ = E

[
rt+1 | st = s,at = a,st+1 = s′

]
Examples

1 Playing backgammon or Go
I Zero reward after each move
I A positive/negative reward for winning/losing a game

2 Managing an investment portfolio
I A positive reward for each dollar left in the bank

Goal: maximize the expected cumulative reward over time

16Reinforcement Learning: MDP

Markov Decision Process

Example: Moving a pawn to a destination on a grid

+10

 10

s5 s6 s7

s3

s2

s4

s1s0

→ available actions A(s)
depend on current state s

I States S = {s0,s1, . . . ,s7}
I Actions A = {up,down, left, right}
I Transition probabilities

I T up
s0,s3 = 0.9

I T right
s0,s1 = 0.1

I . . .

I Rewards
I Rright

s6,s7 =+10
I Rup

s2,s4 =−10
I Otherwise R = 0

I Start in s0

I Game over when reaching s7

17Reinforcement Learning: MDP

Policy

Learning task of an agent
I Execute actions in the environment and observe results, i. e. rewards

I Learn a policy π : S→ A that works as a selection function of choosing
an action given a state

I A policy fully defines the behavior of an agent, i. e. its actions

I MDP policies depend only on the current state and not its history

I Policies are stationary (i. e. time-independent)

Objective
I Maximize the expected cumulative reward over time

I The expected cumulative reward from an initial state s with policy π is

Jπ(s) = ∑
t

Rat
st ,st+1

= Eπ

[
∑

t
rt | s0 = s

]

18Reinforcement Learning: MDP

Value Functions

Definition

I The state-value function Vπ(s) of an MDP is the expected reward
starting from state s, and then following once policy π

I Vπ(s) = Eπ [Jπ(st) | st = s]
I Quantifies how good is it to be in a particular state s

Definition
I The state-action value function Qπ(s,a) is the expected reward starting

from state s, taking action a, and then following policy π

I Qπ(s,a) = Eπ [Jπ(st) | st = s,at = a]
I Quantifies how good is it to be in a particular state s and apply action

a, and afterwards follow policy π

Now, we can formalize the policy definition (with discount factor γ) via

π(s) = argmax
a

∑
s′

T a
ss′(R

a
ss′+ γVπ(s

′)

19Reinforcement Learning: MDP

Optimal Value Functions

I While π can be any policy, π∗ denotes the optimal one with the highest
expected cumulative reward

I The optimal value functions specify the best possible policy

I A MDP is solved when the optimal value functions are known

Definitions

1 The optimal state-value function Vπ∗(s) maximizes the expected
reward over all policies

Vπ∗(s) = max
π

Vπ(s)

2 The optimal action-value function Qπ∗(s,a) maximizes the action-value
function over all policies

Qπ∗(s,a) = max
π

Qπ(s,a)

20Reinforcement Learning: MDP

Markov Decision Processes in R

I Load R library MDPtoolbox

library(MDPtoolbox)

I Create transition matrix for two states and two actions
T <- array(0, c(2, 2, 2))
T[,,1] <- matrix(c(0, 1, 0.8, 0.2), nrow=2, ncol=2, byrow=TRUE)
T[,,2] <- matrix(c(0.5, 0.5, 0.1, 0.9), nrow=2, ncol=2, byrow=TRUE)

→ Dimensions are #states × #states × #actions
I Create reward matrix (of dimensions #states × #actions)

R <- matrix(c(10, 10, 1, -5), nrow=2, ncol=2, byrow=TRUE)

I Check whether the given T and R represent a well-defined MDP

mdp_check(T, R)

[1] ""

→ Returns an empty string if the MDP is valid

21Reinforcement Learning: MDP

Outline

1 Reinforcement Learning

2 Markov Decision Process

3 Learning Algorithms

4 Q-Learning in R

5 Wrap-Up

22Reinforcement Learning: Learning Algorithms

Types of Learning Algorithms

Aim: find optimal policy and value functions

Model-based learning
I Aim: find optimal policy and value functions

I Model of the environment is as MDP with transition probabilities

I Approach: learn the MDP model or an approximation of it

Model-free learning
I Explicit model of the environment model is not available
→ i. e. transition probabilities are unknown

I Approach: derive the optimal policy without explicitly formalizing the
model

23Reinforcement Learning: Learning Algorithms

Outline

3 Learning Algorithms
Model-Based Learning
Model-Free Learning

24Reinforcement Learning: Learning Algorithms

Model-Based Learning: Policy Iteration

Approach via policy iteration
I Given an initial policy π0

I Evaluate policy πi to find the corresponding value function Vπi

I Improve policy over Vπ via greedy exploration

I Policy iteration always converges to optimal policy π∗

Illustration

π0
E−→ Vπ0

I−→ π1
E−→ Vπ1

I−→ ·· · E−→ Vπ∗
I−→ π

∗

with

I E : policy evaluation

I I: policy improvement

25Reinforcement Learning: Learning Algorithms

Policy Evaluation

I Computes the state-value function Vπ for an arbitrary policy π via

Vπ(s) = Eπ

[
rt+1 + γrt+2 + γ

2rt−3 + · · · | st = s
]

= Eπ [rt+1 + γVπ(s+1) | st = s]

= ∑
a

π(s,a)∑
s′

T a
ss′
[
Ra

ss′+ γVπ(s
′)
]

I System of |S| linear equations with |S| unknowns

I Solvable but computational expensive if |S| is large

I Advanced methods are available, e. g. iterative policy evaluation

Discount factor
I If 0 < γ < 1, makes cumulative reward finite

I Necessary for setups with infinite time horizons

I Puts more importance on first learning steps, but less on later ones

26Reinforcement Learning: Learning Algorithms

Iterative Policy Evaluation

I Iterative policy evaluation uses dynamic programming

I Iteratively approximate Vπ

I Choose V0 arbitrarily

I Then use Bellman equation as an update rule

Vk+1(s) = Eπ [rt+1 + γVk(s+1) | st = s]

= ∑
a

π(s,a)∑
s′

T a
ss′
[
Ra

ss′+ γVk(s
′)
]

I Sequence Vk ,Vk+1, . . . converges to Vπ as k → ∞

27Reinforcement Learning: Learning Algorithms

Policy Improvement

I Policy evaluation determines the value function Vπ for a policy π

I The alternative step exploits this knowledge to select the optimal
action in each state

I For that, policy improvement searches policy π ′ that is as good as or
better than π

I Remedy is to use state-action value function via

π
′(s) = argmax

a
Qπ(s,a)

= argmax
a

E [rt+1 + γVk(s+1) | st = s]

= argmax
a

∑
s′

T a
ss′
[
Ra

ss′+ γVk(s
′)
]

I Afterwards, continue with policy evaluation and policy improvement
until a desired convergence criterion is reached

28Reinforcement Learning: Learning Algorithms

Policy Iteration

Example
I Learning an agent traveling through a 2×2 grid (i. e. 4 states)

s3
(Goal)

s0

s1 s2

I Wall (red line) prevents direct moves
from s0 to s3

I Reward favors shorter routes
I Visiting each square/state gives a

reward of −1
I Reaching the goal gives a reward

of 10

I Actions: move left, right, up or down

I Transition probabilities are < 1
→ i. e. allows erroneous moves

29Reinforcement Learning: Learning Algorithms

Policy Iteration in R

Example
I Design an MDP that finds the optimal policy to that problem
I Create individual matrices with pre-specified (random) transition

probabilities for each action

up <- matrix(c(1, 0, 0, 0,
0.7, 0.2, 0.1, 0,
0, 0.1, 0.2, 0.7,
0, 0, 0, 1),

nrow=4, ncol=4, byrow=TRUE)

left <- matrix(c(0.9, 0.1, 0, 0,
0.1, 0.9, 0, 0,

0, 0.7, 0.2, 0.1,
0, 0, 0.1, 0.9),

nrow=4, ncol=4, byrow=TRUE)

30Reinforcement Learning: Learning Algorithms

Policy Iteration in R

I Second chunk of matrices

down <- matrix(c(0.3, 0.7, 0, 0,
0, 0.9, 0.1, 0,
0, 0.1, 0.9, 0,
0, 0, 0.7, 0.3),

nrow=4, ncol=4, byrow=TRUE)

right <- matrix(c(0.9, 0.1, 0, 0,
0.1, 0.2, 0.7, 0,
0, 0, 0.9, 0.1,
0, 0, 0.1, 0.9),

nrow=4, ncol=4, byrow=TRUE)

I Aggregate previous matrices to create transition probabilities in T

T <- list(up=up, left=left,
down=down, right=right)

31Reinforcement Learning: Learning Algorithms

Policy Iteration in R

I Create matrix with rewards

R <- matrix(c(-1, -1, -1, -1,
-1, -1, -1, -1,
-1, -1, -1, -1,
10, 10, 10, 10),
nrow=4, ncol=4, byrow=TRUE)

I Check if this provides a well-defined MDP

mdp_check(T, R) # empty string => ok

[1] ""

32Reinforcement Learning: Learning Algorithms

Policy Iteration in R

I Run policy iteration with discount factor γ = 0.9

m <- mdp_policy_iteration(P=T, R=R, discount=0.9)

I Display optimal policy π∗

m$policy

[1] 3 4 1 1

names(T)[m$policy]

[1] "down" "right" "up" "up"

I Display value function Vπ∗

m$V

[1] 58.25663 69.09102 83.19292 100.00000

33Reinforcement Learning: Learning Algorithms

Outline

3 Learning Algorithms
Model-Based Learning
Model-Free Learning

34Reinforcement Learning: Learning Algorithms

Model-Free Learning

Drawbacks of model-based learning
I Requires MDP, i. e. explicit model of the dynamics in the environment

I Transition probabilities are often not available or difficult to define

I Model-based learning is thus often intractable even in “simple” cases

Model-free learning
I Idea: learn directly from interactions with the environment

I Only use experience from the sequences of states, action, and rewards

Common approaches

1 Monte Carlo methods are simple but has slow convergence

2 Q-learning is more efficient due to off-policy learning

35Reinforcement Learning: Learning Algorithms

Monte Carlo Method

I Monte Carlo methods require no knowledge of transition as in MDPs

I Perform reinforcement learning from a sequence of interactions

I Mimic policy iteration to find optimal policy

I Estimate the value of each action Q(s,a) instead of V (s)

I Store average rewards in state-action table

Example
I State-action table

State Actions Optimal Policy
a1 a2

s1 2 1 a1

s2 1 3 a2

s3 2 4 a2

36Reinforcement Learning: Learning Algorithms

Monte Carlo Method

Algorithm

1 Start with an arbitrary state-action table (and corresponding policies)
→ Often all rewards are initially set to zero

2 Observe first state
3 Choose an action according to ε-greedy action selection, i. e.

I With probability ε , pick a random action
I Otherwise, take action with highest expected reward

4 Update state-action table with new reward (averaging)

5 Observe new state

6 Go to step 3

Disadvantage
I High computational time and thus slow convergence
→ Method must frequently evaluate a suboptimal policy

37Reinforcement Learning: Learning Algorithms

Q-Learning

I One of the most important breakthroughs in reinforcement learning
I Off-policy learning concept

I Explore the environment and at the same time exploit the current
knowledge

I In each step, take a look forward to the next state and observe the
maximum possible reward for all available actions in that state

I Use this knowledge to update the action-value of the corresponding
action in the current state

I Apply update rule with learning rate α (0 < α ≤ 1)

Q(s,a)← Q(s,a)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning

rate

 r ′︸︷︷︸
reward

+ γ︸︷︷︸
discount

factor

max
a′

Q(s′,a′)︸ ︷︷ ︸
expected optimal value

−Q(s,a)︸ ︷︷ ︸
old value


I Q-learning is repeated for different episodes (e. g. games, trials, etc.)

38Reinforcement Learning: Learning Algorithms

Q-Learning

Algorithm

1 Initialize the table Q(s,a) to zero for all state-action pairs (s,a)

2 Observe the current state s
3 Repeat until convergence

I Select an action a and apply it
I Receive immediate reward r
I Observe the new state s′

I Update the table entry for Q(s,a) according to

Q(s,a)← Q(s,a)+α

[
r + γ max

a′
Q(s′,a′)−Q(s,a)

]
I Move to next state, i. e. s← s′

39Reinforcement Learning: Learning Algorithms

Outline

1 Reinforcement Learning

2 Markov Decision Process

3 Learning Algorithms

4 Q-Learning in R

5 Wrap-Up

40Reinforcement Learning: Q-Learning in R

Q-Learning in R

I Unfortunately, R has no dedicated library for model-free reinforcement
learning yet

I Alternative implementations are often available in other programming
languages

I Possible remedy: write your own implementation
→ Not too difficult with the building blocks on the next slides

Example
I Learning an agent finding a destination in a 2×2 grid with a wall
I Initialize 4 states and 4 actions

actions <- c("up", "left", "down", "right")
states <- c("s0", "s1", "s2", "s3")

I Note: real applications (such as in robotics) are prone to disturbances

41Reinforcement Learning: Q-Learning in R

Q-Learning in R

Building blocks
1 Adding a function that mimics the environment

simulateEnvironment <- function(state, action) {
...

}

2 Add a Q-learning function that performs a given number n of episodes

Qlearning <- function(n, s_0, s_terminal,
epsilon, learning_rate) {

...
}

3 Call Q-learning with an initial state s_0, a final state s_terminal
and desired parameters to search a policy

Qlearning(n, s_0, s_terminal, epsilon, learning_rate)

42Reinforcement Learning: Q-Learning in R

Q-Learning in R

I Function returns a list with two entries: the next state and the
corresponding reward given the current state and an intended action
simulateEnvironment <- function(state, action) {

Calculate next state (according to sample grid with wall)
Default: remain in a state if action tries to leave grid
next_state <- state
if (state == "s0" && action == "down") next_state <- "s1"
if (state == "s1" && action == "up") next_state <- "s0"
if (state == "s1" && action == "right") next_state <- "s2"
if (state == "s2" && action == "left") next_state <- "s1"
if (state == "s2" && action == "up") next_state <- "s3"
if (state == "s3" && action == "down") next_state <- "s2"

Calculate reward
if (next_state == "s3") {
reward <- 10

} else {
reward <- -1

}

return(list(state=next_state, reward=reward))
}

43Reinforcement Learning: Q-Learning in R

Q-Learning in R

I Function applies Q-learning for a given number n of episodes

Qlearning <- function(n, s_0, s_terminal,
epsilon, learning_rate) {

Initialize state-action function Q to zero
Q <- matrix(0, nrow=length(states), ncol=length(actions),

dimnames=list(states, actions))

Perform n episodes/iterations of Q-learning
for (i in 1:n) {
Q <- learnEpisode(s_0, s_terminal,

epsilon, learning_rate, Q)
}

return(Q)
}

I Returns state-action function Q

44Reinforcement Learning: Q-Learning in R

Q-Learning in R

learnEpisode <- function(s_0, s_terminal, epsilon, learning_rate, Q) {
state <- s_0 # set cursor to initial state

while (state != s_terminal) {
epsilon-greedy action selection
if (runif(1) <= epsilon) {

action <- sample(actions, 1) # pick random action
} else {

action <- which.max(Q[state,]) # pick first best action
}

get next state and reward from environment
response <- simulateEnvironment(state, action)

update rule for Q-learning
Q[state, action] <- Q[state, action] + learning_rate *

(response$reward + max(Q[response$state,]) - Q[state, action])

state <- response$state # move to next state
}

return(Q)
}

45Reinforcement Learning: Q-Learning in R

Q-Learning in R

I Choose learning parameters

epsilon <- 0.1
learning_rate <- 0.1

I Calculate state-action function Q after 1000 episodes
set.seed(0)
Q <- Qlearning(1000, "s0", "s3", epsilon, learning_rate)
Q

up left down right
s0 -79.962619 -81.15445 -68.39532 -79.34825
s1 -73.891963 -52.43183 -52.67565 -47.91828
s2 -8.784844 -46.32207 -17.97360 -20.29088
s3 0.000000 0.00000 0.00000 0.00000

I Optimal policy
note: problematic for states with ties
actions[max.col(Q)]

[1] "down" "right" "up" "up"

I Agent chooses optimal action in all states

s3
(Goal)

46Reinforcement Learning: Q-Learning in R

Outline

1 Reinforcement Learning

2 Markov Decision Process

3 Learning Algorithms

4 Q-Learning in R

5 Wrap-Up

47Reinforcement Learning: Wrap-Up

Wrap-Up

Summary
I Reinforcement learning learns through trial-and-error from interactions

I The reward indicates the performance of the agent
→ But without showing how to improve its behavior

I Learning is grouped into model-based and model-free strategies

I A common and efficient model-free variant is Q-learning

I Similar to human-like learning in real-world environments

I Common for trade-offs between long-term vs. short-term benefits

Drawbacks
I Can be computational expensive when state-action space is large

I No R library is yet available for model-free learning

48Reinforcement Learning: Wrap-Up

Wrap-Up

Commands inside MDPtoolbox
mdp_example_rand() Generate a random MDP
mdp_check(T, R) Check whether the given T and R represent a

well-defined MDP
mdp_value_iteration(...) Run value iteration to find best policy
mdp_policy_iteration(...) Run policy iteration to find best policy

Further readings
I Sutton & Barto (1998). Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA. Also available online: https:
//webdocs.cs.ualberta.ca/~sutton/book/the-book.html

I Slides by Watkins: http:
//webdav.tuebingen.mpg.de/mlss2013/2015/speakers.html

I Slides by Littman:
http://mlg.eng.cam.ac.uk/mlss09/mlss_slides/Littman_1.pdf

I Vignette for MDPtoolbox: https://cran.r-project.org/web/
packages/MDPtoolbox/MDPtoolbox.pdf

49Reinforcement Learning: Wrap-Up

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://webdav.tuebingen.mpg.de/mlss2013/2015/speakers.html
http://webdav.tuebingen.mpg.de/mlss2013/2015/speakers.html
http://mlg.eng.cam.ac.uk/mlss09/mlss_slides/Littman_1.pdf
https://cran.r-project.org/web/packages/MDPtoolbox/MDPtoolbox.pdf
https://cran.r-project.org/web/packages/MDPtoolbox/MDPtoolbox.pdf

	Reinforcement Learning
	Markov Decision Process
	Learning Algorithms
	Model-Based Learning
	Model-Free Learning

	Q-Learning in R
	Wrap-Up

