Non-Linear Regression

Business Analytics Practice
Winter Term 2015/16

Stefan Feuerriegel

Today's Lecture

Objectives

11 Understanding the need for non-parametric regressions
2 Familiarizing with two common variants: GAM and LOESS
3 Being able to apply the above methods in R and visualize the result

Outline

1 Overview

2 Splines

3 Generalized Additive Models

4 Local Regression

5 Wrap-Up

Outline

1 Overview

2 Splines

3 Generalized Additive Models

4 Local Regression

5 Wrap-Up

Linear Trend Line

Example

- Load dataset to visualize the relationship between age and wage

```
library(ISLR)
data(Wage)
Wage.small <- Wage[1:250, ] # fewer points look nicer on slic
```

- Load package ggplot2 for visualization

library (ggplot2)

- Plot linear trend line, (\rightarrow OLS via method="lm")

```
ggplot(Wage.small, aes(x=age, y=wage)) +
    geom_point(size=0.5) +
    geom_jitter(size=0.5) +
    geom_smooth(method="lm") +
    theme_bw()
```

- geom_jitter (. . .) jitters points to reduce overlaps
- geom_smooth (. . .) is a default way to add smoothed lines

Linear Trend Line

Example

- Blue line is linear trend line with standard errors (gray area)

- With higher age, the wage flattens and even shrinks
- Relationship is obviously not linear

Motivation

Problem description

- Linear relationships show that variables are dependent
\rightarrow e.g. increase in income \Rightarrow increase in happiness
- In reality, the true nature of effects and relationships is often non-linear
\rightarrow e.g. there is a maximum level of happiness
- Default regression techniques cannot adequately adapt to it

Solution: non-linear regressions

Advantages

1 Identify which relationships are non-linear
2 Visualize the shape of non-linear effects
3 Improve the fit (and/or the prediction performance) of models

Non-Linear Regressions

Overview

1 Polynomial regression
\rightarrow adding quadratic, cubic, . . . terms
2 Step-wise functions
\rightarrow similar to dummies for specific intervals
3 Splines
\rightarrow piecewise polynomial function
4 Generalized additive models
\rightarrow non-linear transformations for each term, but in additive fashion
5 Local regressions
\rightarrow sequence of regressions each based on a small neighborhood

Polynomial Regression

Definition

- Linear regression extended by adding quadratic, cubic, ... terms

$$
\boldsymbol{y}=\beta_{0}+\beta_{1} \boldsymbol{x}+\beta_{2} \boldsymbol{x}^{2}+\beta_{3} \boldsymbol{x}^{3}+\ldots
$$

- In practice, compute $\boldsymbol{x}_{1}:=\boldsymbol{x}$ and $\boldsymbol{x}_{2}:=\boldsymbol{x}^{2}$, etc. before estimating

$$
\boldsymbol{y}=\beta_{0}+\beta_{1} \boldsymbol{x}_{1}+\beta_{2} \boldsymbol{x}_{2}+\beta_{3} \mathbf{x}_{3}+\ldots
$$

- Degree of polynomial fixed beforehand or chosen by cross validation

Evaluation

- Coefficients often not relevant \rightarrow difficult to interpret
- Mostly interested in t-test for coefficients or the fitted model
- Explosive growth nature of polynomials makes extrapolation difficult

Polynomial Regression in R

- Generate sample data

```
set.seed(0)
x <- runif(50, min=0, max=100)
y<- sin(x/50*pi) + runif(50, min=-0.5, max=0.5)
```

- Generate polynomial terms of up to degree d via poly (x, degree=d, raw=TRUE), then perform least squares $m<-\operatorname{lm}(y \sim \operatorname{poly}(x$, degree=3, raw=TRUE))

Note: raw=TRUE chooses default polynomials; else it uses orthogonal ones which are numerically more convenient

- Manual alternative
$m<-\operatorname{lm}\left(y \sim x+I\left(x^{\wedge} 2\right)+I\left(x^{\wedge} 3\right)\right)$
Note: I (. . .) is necessary to interpret arithmetic operations in a formula as such

Polynomial Regression in R

- Visualize result by manually generating the fitted line

```
predict_x <- seq(from=0, to=100, by=1)
# Named dataframe to avoid generating polynomial terms
predict_y <- predict(m, newdata=data.frame(x=predict_x))
plot(x, y)
lines(predict_x, predict_y, col="red")
```


Polynomial Regression in R

- ANOVA tests can identify the best-fit model

```
m.d2 <- lm(y ~ poly(x, degree=2, raw=TRUE))
m.d3 <- lm(y ~ poly(x, degree=3, raw=TRUE))
m.d4 <- lm(y ~ poly(x, degree=4, raw=TRUE))
anova(m.d2, m.d3, m.d4)
## Analysis of Variance Table
##
## Model 1: y ~ poly(x, degree = 2, raw = TRUE)
## Model 2: y ~ poly(x, degree = 3, raw = TRUE)
## Model 3: y ~ poly(x, degree = 4, raw = TRUE)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 47 12.1890
## 2 46 3.8570 1 8.3321 97.4464 7.786e-13 ***
## 3 45 3.8477 1 0.0093 0.1085 0.7434
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- The P-value comparing $d=2$ and $d=3$ is almost zero
- Quadratic model is not sufficient \rightarrow cubic is preferred

Stew-Wise Functions

Definition

- Fit a piecewise constant function

$$
y(x)= \begin{cases}c_{1} & \text { if } x \in I_{1} \\ c_{2} & \text { if } x \in I_{2} \\ \ldots & \ldots\end{cases}
$$

- No default procedure to choosing intervals
- Implemented via set of dummy variables for each interval I_{1}, \ldots
- Useful for interaction terms, i. e. $\boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2}$
\rightarrow e.g. salary depends on the interaction of education and tenure

Stew-Wise Functions in R

- Generate sample data

```
set.seed(0)
x <- c(runif(20, min=0, max=40), runif(20, min=40, max=100))
y <- c(runif(20, min=0, max=10), runif(20, min=30, max=40))
y <- y + runif(40, min=-5, max=5)
```

- Estimate linear model with dummies

```
m<- lm(y ~ I (x < 40))
coef (m)
## (Intercept) I(x < 40) TRUE
## 35.27628 -30.15988
```

- Alternative is to split data via cut (x , breaks=. . .)

```
x2 <- cut (x, breaks=c(0, 40, 100))
coef(lm(y ~ x2))
## (Intercept) x2(40,100]
## 5.116405 30.159878
```


Step-Wise Regression in R

- Visualize result by manually generating the fitted line

```
predict_x <- seq(from=0, to=100, by=1)
# Named dataframe to avoid generating polynomial terms
predict_y <- predict(m, newdata=data.frame(x=predict_x))
plot(x, y)
lines(predict_x, predict_y, col="red")
```


Spline Regression

- Divide the range of variables into k distinct regions I_{1}, \ldots, I_{k}
- Fit a polynomial function to each region

$$
y(\boldsymbol{x})= \begin{cases}\beta_{0}^{(1)}+\beta_{1}^{(1)} \boldsymbol{x}+\beta_{2}^{(1)} \boldsymbol{x}+\ldots & \text { if } \boldsymbol{x} \in I_{1} \\ \ldots & \ldots \\ \beta_{0}^{(k)}+\beta_{1}^{(k)} \boldsymbol{x}+\beta_{2}^{(k)} \boldsymbol{x}+\ldots & \text { if } \boldsymbol{x} \in I_{k}\end{cases}
$$

- Can be rewritten with basis functions b_{i} as
$y(\boldsymbol{x})=\beta_{0}+\beta_{1} b_{1}(\boldsymbol{x})+\beta_{2} b_{2}(\boldsymbol{x})+\ldots$
- Smoothing splines work similarly but enforce a certain continuity

Outline

1 Overview

2 Splines

3 Generalized Additive Models

4 Local Regression

5 Wrap-Up

Splines

To be added ...

Outline

1 Overview
2 Splines
3 Generalized Additive Models
4 Local Regression
5 Wrap-Up

Generalized Additive Models

Generalized Additive Models (GAM)

- Extend standard linear model by allowing non-linear functions
- Outcome depends linearly on (smooth) non-linear functions f_{j}

$$
y_{i}=\beta_{0}+\sum_{j=1}^{p} f_{j}\left(x_{i j}\right)
$$

- Model is called additive, since we calculate separate $f_{j}\left(x_{i j}\right)$ for each x_{i}
- f_{j} can be polynomials, though splines are more common

Pros and Cons

Advantages

- Fits automatically non-linear f_{j} to each $x_{i} \rightarrow$ no need for manual trying
- Non-linearity achieves a more accurate fit
- Model is additive, thus it is possible to examine the effect of each \boldsymbol{x}_{i} on \boldsymbol{y} individually

Drawbacks

- Restricted to an additive model
\rightarrow important interactions can be missed

GAM Smoothing in ggplot2

- ggplot2 has a built-in support for GAM via method="gam"

```
ggplot(Wage.small, aes(x=age, y=wage)) +
    geom_point(size=0.5) +
    geom_jitter(size=0.5) +
    geom_smooth(method="gam") +
    theme_bw()
```


GAM in R

- Load the gam package

library (gam)

- Estimate model, e.g. with smoothing splines

```
m.gam <- gam(wage ~ s(year, 4) + s(age, 5) + education,
    data=Wage)
m.gam
## Call:
## gam(formula = wage ~ s(year, 4) + s(age, 5) + education, data = W
##
## Degrees of Freedom: 2999 total; 2986 Residual
## Residual Deviance: 3689770
```

- s(variable, df) introduces smoothing splines of degree df
- ns (variable, df) are natural splines
- education is a factor and thus not treated
- Detailed summary on results via

```
summary(m.gam)
```


GAM in R

- Component-wise plots show the effect of each term

```
par(mfrow=c(1, 3))
plot.gam(m.gam, se=TRUE, col="blue")
## Error in 1:object$nsdf: argument of length 0
```

- One might think that effect of year is linear

GAM in R

- ANOVA test identifies best-fit model
\rightarrow e.g. excluding year or assuming a linear or non-linear effect

```
m.gam1 <- gam(wage ~ s(age, 5) + education, data=Wage)
m.gam2 <- gam(wage ~ year + s(age, 5) + education, data=Wage)
m.gam3 <- gam(wage ~ s(year, 4) + s(age, 5) + education, data=Wage)
anova(m.gam1, m.gam2, m.gam3)
## Analysis of Deviance Table
##
## Model 1: wage ~ s(age, 5) + education
## Model 2: wage ~ year + s(age, 5) + education
## Model 3: wage ~ s(year, 4) + s(age, 5) + education
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 2990 3711731
## 2989 3693842 1 17889.2 0.0001419 ***
## 3 2986 3689770 3 4071.1 0.3483897
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- GAM with linear year is better than without (P-value <0.001)
- Non-linear effect of year is not necessary (P-value >0.05)

Outline

1 Overview
 2 Splines
 3 Generalized Additive Models

4 Local Regression

5 Wrap-Up

Local Regression

Local regression (LOESS)

- Based on earlier locally weighted scatterplot smoothing (LOWESS)
- Locally weighted regression using nearest neighbors
- Weight points stronger that are closer
- Put less weights on the points further away

Non-parametric approach

- Smoother has no pre-defined form but is constructed from data
- As such, the underlying distributions can be unknown
- However, needs more observations to infer relationships from data

LOESS

Idea: locally weighting nearest neighbors

LOESS

High-level procedure

1 Choose a point x_{0} at which LOESS is calculated
2 Choose subsets whose size is determined by a smoothing parameter

- Proportion α of all points which influence the curvature of the smoothing at each point
- Subset consists of the α nearest neighbors of x_{0}
- Useful values of α are often in the range 0.25 to 0.5

3 Fit a low-degree polynomial to each subset

- Fitting is done by weighted least squares
- Gives more weight to points closer to x_{0}
- Degree is often linear or quadratic

4 Repeat the above steps for all points in the dataset

Pros and Contras

Advantages

- Independent of a specific model (or distributions) that fit all the data
- Very flexible and thus can adapt to complex relationships
- No need to estimate a global function
\rightarrow only use nearest neighbors with a smoothing parameter

Drawbacks

- High computational costs
\rightarrow ggplot2 uses LOESS by default for up to 1000 data points
- Requires large and fairly dense dataset for good results
- Result is not a closed form solution, which can be further evaluated or interpreted

LOESS in ggplot2

- ggplot2 has a built-in support for LOESS via method="loess"

```
ggplot(Wage.small, aes(age, wage)) +
    geom_point(size=0.5) +
    geom_jitter(size=0.5) +
    geom_smooth(method="loess", span=0.3) +
    theme_bw()
```


LOESS in ggplot2

Parameter span controls the intensity of smoothing

Outline

1 Overview

2 Splines

3 Generalized Additive Models

4 Local Regression

5 Wrap-Up

Wrap-Up

Summary

- Non-linear models can effectively supplement least squares
- Various non-linear models are available
\rightarrow manual tests necessary to find a good model
- For non-parametric methods, the fitting model can be unknown
- ggplot (. . .) is helpful to quickly gain first insights or for nice visualizations

Further readings

- Section 7 in the book "An Introduction to Statistical Learning"
- Package mgcv is a newer alternative to gam

