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Today’s Lecture

Avoiding overfitting and improving model interpretability with the help
of regularization methods

Understanding both ridge regression and the LASSO
Applying these methods for variable selection
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Motivation for Regularization

» Linear models are frequently favorable due to their interpretability and
often good predictive performance

» Yet, Ordinary Least Squares (OLS) estimation faces challenges

Challenges
Interpretability

» OLS cannot distinguish variables with little or no influence
» These variables distract from the relevant regressors

Overfitting

» OLS works well when number of observation n is bigger than the
number of predictors p,i.e. n>p

» If n= p, overfitting results into low accuracy on unseen observations

» If n < p, variance of estimates is infinite and OLS fails

» As a remedy, one can identify only relevant variables by feature
selection



Motivation for Regularization

Fitting techniques as alternatives to OLS
» Subset selection

» Pick only a subset of all p variables which is assumed to be relevant
» Estimate model with least squares using these reduced set of variables

» Dimension reduction

» Project p predictors into a d-dimensional subspace with d < p
» These d features are used to fit a linear model by least squares

» Shrinkage methods, also named regularization

» Fit model with all p variables
» However, some coefficients are shrunken towards zero
» Has the effect of reducing variance



Regularization Methods

» Fit linear models with least squares but impose constraints on the
coefficients
» Instead, alternative formulations add a penalty in the OLS formula
» Best known are ridge regression and LASSO (least absolute shrinkage
operator)
» Ridge regression can shrink parameters close to zero

» LASSO models can shrink some parameters exactly to zero
— Performs implicit variable selection
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Ridge Regression

OLS estimation
» Recall the OLS technique to estimate B = [Bo, B1, .- - ,ﬁp]T
» Minimizes the residual sum of squares (RSS)

2
n p
Bols = min RSS:minZ yi—ﬁo—Zﬁjx,-,-
B B = j=1

Ridge regression

» Imposes a penalty on the size of the coefficients to reduce the
variance of the estimates

n P 2 P
ﬁridge = an Z (y/ —Bo— Z Bjxij) + 2 Z ﬁjz
i=1 = j=1

N——
RSS shrinkage penalty
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Tuning Parameter

v

Tuning parameter A > 0 controls the relative impact of the penalty

v

P
Penalty A Y, sz has the effect of shrinking f3; towards zero
=1

v

If A = 0, penalty term has no effect (similar to OLS)

v

Choice of A is critical — determined separately via cross validation

reouarzaton: R Rearession 4‘



Ridge Regression in R

» Predicting salaries of U. S. baseball players based on game statistics
» Loading data Hitters

library (ISLR)
data (Hitters)
Hitters <— na.omit (Hitters)

» Loading package glmnet which implements ridge regression
library (glmnet)

» Main function glmnet (x, y, alpha=0) requires dependent
variable y and regressors x

» Function only processes numerical input, whereas categorical
variables needs to be transformed via model .matrix (...)
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Ridge Regression in R

» Prepare variables

set .seed (0)

> 1st column th 1R

# drop 1st column with intercept (glmnet

X <- model.matrix(Salary ~ ., Hitters) [, -1]
y <- Hitters$Salary
train_idx <- sample (nrow(x), size=0.9xnrow(x))

x.train <- x[train_idx, ]
x.test <- x[-train_idx, ]
y.train <- y[train_idx]
y.test <- y[-train_idx]

» Call ridge regression and automatically test a sequence of A

Im.ridge <- glmnet (x.train, y.train, alpha=0)

reouarzaton: R Rearession ‘



Ridge Regression in R

» coef (...) retrieves coefficients belonging to each A

dim (coef (1lm.ridge))

## [1] 20 100

— here: 100 models with different A and each with 20 coefficients
» For example, the 50th model is as follows

Im.ridge$lambda[50] # tested lambda value

## [1] 2581.857

head (coef (1lm.ridge) [,50]) # estimated coefficients

## (Intercept) AtBat Hits HmRun Runs
## 211.76123020 0.08903326 0.37913073 1.21041548 0.64115228
## RBI

## 0.59834311
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Ridge Regression in R
» plot (model, xvar="lambda") investigates the influence of A
on the estimated coefficients for all variables

plot (Im.ridge, xvar="lambda")
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» Bottom axis gives In A, top the number of non-zero coefficients
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Plot: Lambda vs. Coefficients
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Parameter Tuning

» Optimal A4 is determined via cross validation by minimizing the mean
squared error from a prediction
» Usageis cv.glmnet (x, y, alpha=0)
cv.ridge <- ev.glmnet (x.train, y.train, alpha=0)
» Optimal A and corresponding coefficients
cv.ridge$lambda.min
## [1]1 29.68508
head (coef (cv.ridge, s="lambda.min"))

## 6 x 1 sparse Matrix of class "dgCMatrix"

## 1
## (Intercept) 109.4192279
## AtBat -0.6764771
## Hits 2.5974777
## HmRun -0.7058689
## Runs 1.8565943

## RBI 0.3434801
reouarzaton: R Rearession ‘



Parameter Tuning

» plot (cv.model) compares the means squared error across A

plot (cv.ridge)
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» Mean squared error first remains fairly constant and then rises sharply
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Ridge Regression in R

» predict (model, newx=x, s=lambda) makes predictions for
new data x and a specific A

pred.ridge <- predict (cv.ridge, newx=x.test, s="lambda.min")
head (cbind (pred.ridge, y.test))

#4 1 y.test
## —Alan Ashby 390.1766 475.000
## —Andre Dawson 1094.5741 500.000
## -Andre Thornton 798.5886 1100.000
## —-Alan Trammell 893.8298 517.143
## -Barry Bonds 518.9105 100.000
## —-Bob Dernier 353.4100 708.333

» Mean absolute percentage error (MAPE)
mean (abs ( (y.test — pred.ridge)/y.test))

## [1] 0.6811053
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Scaling of Estimates

OLS estimation
» Recall: least square estimates are scale equivalent
» Multiplying x; by ¢ = scaling of B; by a factor 1/c¢

Ridge regression
» In contrast, coefficients in ridge regression can change substantially
when scaling variable x; due to penalty term
» Best is to use the following approach

Scale variables via

~ X,'j
Xjj =
2

Ms

Y 05-%)
i=1

which divides by the standard deviation of x;
Estimate the coefficients of ridge regression

» glmnet scales accordingly, but returns coefficients on original scale

Regularization: Ridge Regression




Bias-Variance Trade-Off

» Ridge regressions benefits from bias-variance trade-off

» As A increases, the flexibility of ridge regression coefficients decreases
— This Decreases variance but increases bias

o
©

o
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o
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Mean Squared Error
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» Squared bias (in black), variance (blue), and error on test set (red)

» Dashed line is minimum possible mean squared error



Pros and Cons

Advantages

» Ridge regression can reduce the variance (with an increasing bias)
— works best in situations where the OLS estimates have high
variance

» Can improve predictive performance
» Works in situations where p < n
» Mathematically simple computations

Disadvantages
» Ridge regression is not able to shrink coefficients to exactly zero
» As aresult, it cannot perform variable selection

= Alternative: Least Absolute Shrinkage and Selection Operator (LASSO)
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LASSO

Least Absolute Shrinkage and Selection Operator (LASSO)

» Ridge regression always includes p variables, but LASSO performs
variables selection

v

LASSO only changes the shrinkage penalty

n p 2 p
ﬁLAsso:”E”Z (Yi—ﬁo—ZB/Xi1> + AY IB;
i=1 j=1 j=1

RSS shrinkage penalty

v

Here, the LASSO uses the Ly-norm ||B]|; = ¥ | 5|
)

v

This penalty allows coefficients to shrink towards exactly zero

v

LASSO usually results into sparse models, that are easier to interpret

eouarzaon LSO ‘



LASSOinR

» Implemented in glmnet (x, y, alpha=1) as partof the
glmnet package

Im.lasso <- glmnet (x.train, y.train, alpha=1)
Note: different value for alpha
» plot (...) shows how A changes the estimated coefficients

plot (1m.lasso, xvar="lambda")
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Parameter Tuning
» cv.glmnet (x, y, alpha=1) determines optimal A via cross
validation by minimizing the mean squared error from a prediction

set .seed (0)
cv.lasso <- cv.glmnet (x.train, y.train, alpha=1)

» Optimal A and corresponding coefficients ("." are removed variables)
cv.lasso$lambda.min
## [1] 2.143503
head (coef (cv.lasso, s="lambda.min"))

## 6 x 1 sparse Matrix of class "dgCMatrix"

## 1
## (Intercept) 189.7212235
## AtBat -1.9921887
## Hits 6.6124279
## HmRun 0.6674432
## Runs

## RBI

eouarzaon LSO ‘



Parameter Tuning

» Total variables

nrow (coef (cv.lasso))

## [1]

20

» Omitted variables

dimnames (coef (cv.lasso, s="lambda.min")) [[1]] [which (
coef (cv.lasso, s="lambda.min") == 0)]
## [1] "Runs" "RBI" "CAtBat" "CHits"

» Included variables

dimnames (coef (cv.lasso, s="lambda.min")) [[1]] [which (

coef (cv.lasso, s="lambda.min") != 0)]
## [1] " (Intercept)" "AtBat" EEEgW "HmRun"
it [6] "Years" "CHmRun" "CRuns" "CRBI"
## [11] "LeagueN" "DivisionW" "PutOuts" "Assists"
## [16] "NewLeagueN"

Regularization: LASSO

e



Parameter Tuning

» plot (cv.model) compares the means squared error across A

plot (cv.lasso)
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» Mean squared error first remains fairly constant and then rises sharply
» Top axis denotes the number of included model variables
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LASSO in R
» predict (model, newx=x, s=lambda) makes predictions for
new data x and a specific A
pred.lasso <- predict (cv.lasso, newx=x.test, s="lambda.min")
» Mean absolute percentage error (MAPE) of LASSO
mean (abs ( (y.test - pred.lasso)/y.test))

## [1] 0.6328225
» For comparison, error of ridge regression
## [1] 0.6811053

eouarzaon LSO ‘
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Problem Formulation

Both ridge regression and LASSO can be rewritten as

n P 2 p
ﬁridge = minz <YI_ﬁO_ZBinj> s.1. Zﬁjz <6
B i= =1 =1
RSS
n P 2 p
/3|_Asso:”}3inz1 <YI—ﬁ0—2B/XU> s.t. ;\ﬁ/\ <6
i= j= j=
RSS

Outlook: both ridge regression and LASSO have Bayesian formulations



Variable Selection with LASSO

Comparison of previous constraints
Ridge regression LASSO

BZ+B5<6 |Bi|+1B2| < 6

» Objective function RSS as contours in red
» Constraints (blue) in 2 dimensions
» Intersection occurs at 8y = 0 for LASSO

Regularization: Comparison



Case Study

Example
» Comparison to OLS estimator

Im.ols <- Im(y.train ~ x.train)

# Workaround as pred v r 3 7 t Ccocent s ) | . frame

pred.ols <- predict(lm.ols, data.frame(x.train=I(x.test)))
mean (abs ((y.test - pred.ols)/y.test))
## [1] 0.6352089

» Comparison

OLS Ridge regression LASSO
0.64 0.68 0.63

» Here: LASSO can outperform OLS with fewer predictors



Elastic Net

» Elastic net generalizes the ideas of both LASSO and ridge regression
» Combination of both penalties
. 2
Beiasionet = MinASS+4 | (1—a) [|Bll2/2+ B4
B —_—— - —
Lo-penalty Li-penalty
» L;-penalty helps generating a sparse model
» L[y-part overcomes a strict selection
» Parameter o controls numerical stability

» o = 0.5 tends to handle correlated variables as groups



Elastic Net in R

Example
» Test the elastic net with a sequence of values for o
» Report in-sample mean squared error

set.seed (0)
alpha <- seq(from=0, to=1l, by=0.1)
en <- lapply(alpha, function(a)
cv.glmnet (x.train, y.train, alpha=a))
en.mse <- unlist (lapply(en, function (i)
i$cvm[which (i$lambda==i$lambda.min) ]))
plot (alpha, en.mse, ylab="Mean Squared Error", pch=16)
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Elastic Net in R

Example (continued)
» Report out-of-sample mean absolute prediction error

en.mape <- unlist (lapply(en, function (i) ({
pred <- predict (i, newx=x.test,
s="lambda.min")
mean (abs ( (y.test — pred)/y.test))
1))
plot (alpha, en.mape, ylab="MAPE", pch=16)

.
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MAPE

0.64 0.65 0.66
|
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Summary

Regularization methods
» Regularization methods bring advantages beyond OLS

v

Cross validation chooses tuning parameter A

v

LASSO performs variable selection

v

Neither ridge regression nor LASSO dominates one another

v

Cross validation finds the best approach for a given dataset

Outlook
» In practice, A is scaled by rule of thumb to get better results
» Research has lately developed several variants and improvements
» Spike-and-slab regression can be a viable alternative for inferences

reouarzaten: el ‘



Further Readings

Package glmnet

» glmnet tutorial: http://web.stanford.edu/~hastie/
glmnet/glmnet_alpha.html

» glmnet webinar: http://web.stanford.edu/~hastie/
TALKS/glmnet_webinar.pdf
— see Hastie’s website for data and scripts

Background on methods

» Talk on elastic net: http:
//web.stanford.edu/~hastie/TALKS/enet_talk.pdf

» Section 6.2 in the book “An Introduction to Statistical Learning”

Applications
» Especially healthcare analytics, but also sports

— e.g. Groll, Schauberger & Tutz (2015): Prediction of major international soccer tournaments based on team-specific
regularized Poisson regression: An application to the FIFA World Cup 2014. In: Journal of Quantitiative Analysis in Sports. 10:2

Regularizppo97:4445:Up
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