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Today’s Lecture

Objectives

1 Avoiding overfitting and improving model interpretability with the help
of regularization methods

2 Understanding both ridge regression and the LASSO

3 Applying these methods for variable selection
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Motivation for Regularization

I Linear models are frequently favorable due to their interpretability and
often good predictive performance

I Yet, Ordinary Least Squares (OLS) estimation faces challenges

Challenges

1 Interpretability

I OLS cannot distinguish variables with little or no influence
I These variables distract from the relevant regressors

2 Overfitting

I OLS works well when number of observation n is bigger than the
number of predictors p, i. e. n� p

I If n ≈ p, overfitting results into low accuracy on unseen observations
I If n < p, variance of estimates is infinite and OLS fails
I As a remedy, one can identify only relevant variables by feature

selection
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Motivation for Regularization

Fitting techniques as alternatives to OLS
I Subset selection

I Pick only a subset of all p variables which is assumed to be relevant
I Estimate model with least squares using these reduced set of variables

I Dimension reduction
I Project p predictors into a d-dimensional subspace with d < p
I These d features are used to fit a linear model by least squares

I Shrinkage methods, also named regularization
I Fit model with all p variables
I However, some coefficients are shrunken towards zero
I Has the effect of reducing variance
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Regularization Methods

I Fit linear models with least squares but impose constraints on the
coefficients

I Instead, alternative formulations add a penalty in the OLS formula
I Best known are ridge regression and LASSO (least absolute shrinkage

operator)
I Ridge regression can shrink parameters close to zero
I LASSO models can shrink some parameters exactly to zero
→ Performs implicit variable selection
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Ridge Regression

OLS estimation
I Recall the OLS technique to estimate βββ = [β0,β1, . . . ,βp]T

I Minimizes the residual sum of squares (RSS)

βββ OLS = min
βββ

RSS = min
βββ

n

∑
i=1

(
yi −β0−

p

∑
j=1

βjxij

)2

Ridge regression
I Imposes a penalty on the size of the coefficients to reduce the

variance of the estimates

βββ ridge = min
βββ

n

∑
i=1

(
yi −β0−

p

∑
j=1

βjxij

)2

︸ ︷︷ ︸
RSS

+ λ

p

∑
j=1

β
2
j︸ ︷︷ ︸

shrinkage penalty
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Tuning Parameter

I Tuning parameter λ > 0 controls the relative impact of the penalty

I Penalty λ

p
∑

j=1
β 2

j has the effect of shrinking βj towards zero

I If λ ≈ 0, penalty term has no effect (similar to OLS)

I Choice of λ is critical→ determined separately via cross validation
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Ridge Regression in R

I Predicting salaries of U. S. baseball players based on game statistics
I Loading data Hitters

library(ISLR) # Hitters is located inside ISLR
data(Hitters)
Hitters <- na.omit(Hitters) # salary can be missing

I Loading package glmnet which implements ridge regression

library(glmnet)

I Main function glmnet(x, y, alpha=0) requires dependent
variable y and regressors x

I Function only processes numerical input, whereas categorical
variables needs to be transformed via model.matrix(...)
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Ridge Regression in R

I Prepare variables

set.seed(0)

# drop 1st column with intercept (glmnet has already one)
x <- model.matrix(Salary ~ ., Hitters)[, -1]
y <- Hitters$Salary
train_idx <- sample(nrow(x), size=0.9*nrow(x))

x.train <- x[train_idx, ]
x.test <- x[-train_idx, ]
y.train <- y[train_idx]
y.test <- y[-train_idx]

I Call ridge regression and automatically test a sequence of λ

lm.ridge <- glmnet(x.train, y.train, alpha=0)
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Ridge Regression in R

I coef(...) retrieves coefficients belonging to each λ

dim(coef(lm.ridge))

## [1] 20 100

→ here: 100 models with different λ and each with 20 coefficients
I For example, the 50th model is as follows

lm.ridge$lambda[50] # tested lambda value

## [1] 2581.857

head(coef(lm.ridge)[,50]) # estimated coefficients

## (Intercept) AtBat Hits HmRun Runs
## 211.76123020 0.08903326 0.37913073 1.21041548 0.64115228
## RBI
## 0.59834311
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Ridge Regression in R

I plot(model, xvar="lambda") investigates the influence of λ

on the estimated coefficients for all variables

plot(lm.ridge, xvar="lambda")
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Plot: Lambda vs. Coefficients

−20

−10

0

10000 20000

Lambda

C
oe

ffi
ci

en
ts

Division

League

New League

Years

Walks

I Manual effort necessary for
pretty format

I As λ increases, coefficients
shrink towards zero

I All other variables are shown
in gray

15Regularization: Ridge Regression



Parameter Tuning

I Optimal λ is determined via cross validation by minimizing the mean
squared error from a prediction

I Usage is cv.glmnet(x, y, alpha=0)

cv.ridge <- cv.glmnet(x.train, y.train, alpha=0)

I Optimal λ and corresponding coefficients

cv.ridge$lambda.min

## [1] 29.68508

head(coef(cv.ridge, s="lambda.min"))

## 6 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 109.4192279
## AtBat -0.6764771
## Hits 2.5974777
## HmRun -0.7058689
## Runs 1.8565943
## RBI 0.3434801
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Parameter Tuning

I plot(cv.model) compares the means squared error across λ

plot(cv.ridge)
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Ridge Regression in R

I predict(model, newx=x, s=lambda) makes predictions for
new data x and a specific λ

pred.ridge <- predict(cv.ridge, newx=x.test, s="lambda.min")
head(cbind(pred.ridge, y.test))

## 1 y.test
## -Alan Ashby 390.1766 475.000
## -Andre Dawson 1094.5741 500.000
## -Andre Thornton 798.5886 1100.000
## -Alan Trammell 893.8298 517.143
## -Barry Bonds 518.9105 100.000
## -Bob Dernier 353.4100 708.333

I Mean absolute percentage error (MAPE)

mean(abs((y.test - pred.ridge)/y.test))

## [1] 0.6811053
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Scaling of Estimates

OLS estimation
I Recall: least square estimates are scale equivalent

I Multiplying xj by c⇒ scaling of βj by a factor 1/c

Ridge regression
I In contrast, coefficients in ridge regression can change substantially

when scaling variable xj due to penalty term
I Best is to use the following approach

1 Scale variables via

x̃ij =
xij√

1
n

n
∑

i=1
(xij − x̄j )

2

which divides by the standard deviation of xj

2 Estimate the coefficients of ridge regression

I glmnet scales accordingly, but returns coefficients on original scale
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Bias-Variance Trade-Off

I Ridge regressions benefits from bias-variance trade-off

I As λ increases, the flexibility of ridge regression coefficients decreases
→ This Decreases variance but increases bias
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I Squared bias (in black), variance (blue), and error on test set (red)

I Dashed line is minimum possible mean squared error
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Pros and Cons

Advantages
I Ridge regression can reduce the variance (with an increasing bias)
→ works best in situations where the OLS estimates have high
variance

I Can improve predictive performance

I Works in situations where p < n

I Mathematically simple computations

Disadvantages
I Ridge regression is not able to shrink coefficients to exactly zero

I As a result, it cannot perform variable selection

⇒ Alternative: Least Absolute Shrinkage and Selection Operator (LASSO)
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LASSO

Least Absolute Shrinkage and Selection Operator (LASSO)

I Ridge regression always includes p variables, but LASSO performs
variables selection

I LASSO only changes the shrinkage penalty

βββ LASSO = min
βββ

n

∑
i=1

(
yi −β0−

p

∑
j=1

βjxij

)2

︸ ︷︷ ︸
RSS

+ λ

p

∑
j=1
|β |j︸ ︷︷ ︸

shrinkage penalty

I Here, the LASSO uses the L1-norm ‖βββ‖1 = ∑
j
|βj |

I This penalty allows coefficients to shrink towards exactly zero

I LASSO usually results into sparse models, that are easier to interpret
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LASSO in R
I Implemented in glmnet(x, y, alpha=1) as part of the
glmnet package
lm.lasso <- glmnet(x.train, y.train, alpha=1)

Note: different value for alpha
I plot(...) shows how λ changes the estimated coefficients

plot(lm.lasso, xvar="lambda")
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Parameter Tuning

I cv.glmnet(x, y, alpha=1) determines optimal λ via cross
validation by minimizing the mean squared error from a prediction

set.seed(0)
cv.lasso <- cv.glmnet(x.train, y.train, alpha=1)

I Optimal λ and corresponding coefficients ("." are removed variables)

cv.lasso$lambda.min

## [1] 2.143503

head(coef(cv.lasso, s="lambda.min"))

## 6 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 189.7212235
## AtBat -1.9921887
## Hits 6.6124279
## HmRun 0.6674432
## Runs .
## RBI .
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Parameter Tuning

I Total variables

nrow(coef(cv.lasso))

## [1] 20

I Omitted variables

dimnames(coef(cv.lasso, s="lambda.min"))[[1]][which(
coef(cv.lasso, s="lambda.min") == 0)]

## [1] "Runs" "RBI" "CAtBat" "CHits"

I Included variables

dimnames(coef(cv.lasso, s="lambda.min"))[[1]][which(
coef(cv.lasso, s="lambda.min") != 0)]

## [1] "(Intercept)" "AtBat" "Hits" "HmRun" "Walks"
## [6] "Years" "CHmRun" "CRuns" "CRBI" "CWalks"
## [11] "LeagueN" "DivisionW" "PutOuts" "Assists" "Errors"
## [16] "NewLeagueN"
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Parameter Tuning

I plot(cv.model) compares the means squared error across λ

plot(cv.lasso)
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I Top axis denotes the number of included model variables
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LASSO in R

I predict(model, newx=x, s=lambda) makes predictions for
new data x and a specific λ

pred.lasso <- predict(cv.lasso, newx=x.test, s="lambda.min")

I Mean absolute percentage error (MAPE) of LASSO

mean(abs((y.test - pred.lasso)/y.test))

## [1] 0.6328225

I For comparison, error of ridge regression

## [1] 0.6811053
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Problem Formulation

Both ridge regression and LASSO can be rewritten as

βββ ridge = min
βββ

n

∑
i=1

(
yi −β0−

p

∑
j=1

βjxij

)2

︸ ︷︷ ︸
RSS

s. t.
p

∑
j=1

β
2
j ≤ θ

βββ LASSO = min
βββ

n

∑
i=1

(
yi −β0−

p

∑
j=1

βjxij

)2

︸ ︷︷ ︸
RSS

s. t.
p

∑
j=1
|βj | ≤ θ

Outlook: both ridge regression and LASSO have Bayesian formulations
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Variable Selection with LASSO

Comparison of previous constraints

Ridge regression

β
2
1 + β

2
2 ≤ θ

β2

β1

βOLS

βridge

LASSO

|β1|+ |β2| ≤ θ

β2

β1

βOLS

βLASSO

I Objective function RSS as contours in red

I Constraints (blue) in 2 dimensions

I Intersection occurs at β1 = 0 for LASSO
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Case Study

Example
I Comparison to OLS estimator

lm.ols <- lm(y.train ~ x.train)

# Workaround as predict.lm only accepts a data.frame
pred.ols <- predict(lm.ols, data.frame(x.train=I(x.test)))

mean(abs((y.test - pred.ols)/y.test))

## [1] 0.6352089

I Comparison

OLS Ridge regression LASSO
0.64 0.68 0.63

I Here: LASSO can outperform OLS with fewer predictors
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Elastic Net

I Elastic net generalizes the ideas of both LASSO and ridge regression

I Combination of both penalties

βββ ElasticNet = min
βββ

RSS + λ

(1−α)‖βββ‖2
2 /2︸ ︷︷ ︸

L2-penalty

+ α ‖βββ‖1︸ ︷︷ ︸
L1-penalty


I L1-penalty helps generating a sparse model

I L2-part overcomes a strict selection

I Parameter α controls numerical stability

I α = 0.5 tends to handle correlated variables as groups
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Elastic Net in R

Example
I Test the elastic net with a sequence of values for α

I Report in-sample mean squared error

set.seed(0)
alpha <- seq(from=0, to=1, by=0.1)
en <- lapply(alpha, function(a)

cv.glmnet(x.train, y.train, alpha=a))
en.mse <- unlist(lapply(en, function(i)

i$cvm[which(i$lambda==i$lambda.min)]))
plot(alpha, en.mse, ylab="Mean Squared Error", pch=16)

●

●

●

● ●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

12
00

00
13

00
00

alpha

M
ea

n 
S

qu
ar

ed
 E

rr
or

34Regularization: Comparison



Elastic Net in R

Example (continued)
I Report out-of-sample mean absolute prediction error

en.mape <- unlist(lapply(en, function(i) {
pred <- predict(i, newx=x.test,

s="lambda.min")
mean(abs((y.test - pred)/y.test))

}))
plot(alpha, en.mape, ylab="MAPE", pch=16)
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Summary

Regularization methods
I Regularization methods bring advantages beyond OLS

I Cross validation chooses tuning parameter λ

I LASSO performs variable selection

I Neither ridge regression nor LASSO dominates one another

I Cross validation finds the best approach for a given dataset

Outlook
I In practice, λ is scaled by rule of thumb to get better results

I Research has lately developed several variants and improvements

I Spike-and-slab regression can be a viable alternative for inferences
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Further Readings

Package glmnet
I glmnet tutorial: http://web.stanford.edu/~hastie/
glmnet/glmnet_alpha.html

I glmnet webinar: http://web.stanford.edu/~hastie/
TALKS/glmnet_webinar.pdf
→ see Hastie’s website for data and scripts

Background on methods
I Talk on elastic net: http:
//web.stanford.edu/~hastie/TALKS/enet_talk.pdf

I Section 6.2 in the book “An Introduction to Statistical Learning”

Applications
I Especially healthcare analytics, but also sports
→ e. g. Groll, Schauberger & Tutz (2015): Prediction of major international soccer tournaments based on team-specific

regularized Poisson regression: An application to the FIFA World Cup 2014. In: Journal of Quantitiative Analysis in Sports, 10:2,

pp. 97–115. 38Regularization: Wrap-Up
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