# Data Mining with Linear Discriminants

Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel

### Today's Lecture

#### Objectives

- Recognizing the ideas of artificial neural networks and their use in R
- 2 Understanding the concept and the usage of support vector machines
- Being able to evaluate the predictive performance in terms of both metrics and the receiver operating characteristic curve
- 4 Distinguishing predictive and explanatory power

## Outline

#### 1 Recap

- 2 Linear Discriminants
- 3 Artificial Neural Networks
- 4 Support Vector Machines
- 5 Prediction Performance
- 6 Wrap-Up

## Outline

#### 1 Recap

- 2 Linear Discriminants
- 3 Artificial Neural Networks
- 4 Support Vector Machines
- 5 Prediction Performance
- 6 Wrap-Up

# Supervised vs. Unsupervised Learning

#### Supervised learning

- Machine learning task of inferring a function from labeled training data
- Training data includes both the input and the desired results

   → correct results (target values) are given

#### Unsupervised learning

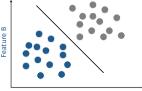
- Methods try to find hidden structure in unlabeled data
- The model is not provided with the correct results during the training
- No error or reward signal to evaluate a potential solution
- Examples:
  - Hidden Markov models
  - Dimension reduction (e.g. by principal component analysis)
  - Clustering (e.g. by k-means algorithm)
    - $\rightarrow$  group into classes on the basis of their statistical properties only

# Taxonomy of Machine Learning

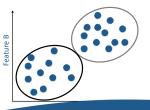
- Machine learning estimates function and parameter in y = f(x, w)
- Type of method varies depending on the nature of what is predicted

#### Regression

- Predicted value refers to a real number
- Continuous y
- Classification
  - Predicted value refers to a class label
  - Discrete y (e.g. class membership)
- Clustering
  - Group points into clusters based on how "near" they are to one another
  - Identify structure in data

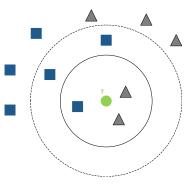


Feature A



# K-Nearest Neighbor Classification

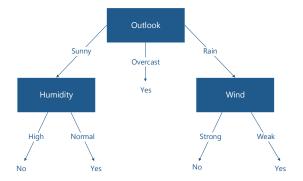
- Input: training examples as vectors in a multidimensional feature space, each with a class label
- No training phase to calculate internal parameters
- Testing: Assign to class according to k-nearest neighbors
- Classification as majority vote
- Problematic
  - Skewed data
  - Unequal frequency of classes



ightarrow What label to assign to the circle?

#### **Decision Trees**

- Flowchart-like structure in which nodes represent tests on attributes
- End nodes (leaves) of each branch represent class labels
- Example: Decision tree for playing tennis

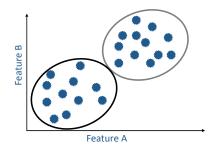


#### **Decision Trees**

- Issues
  - How deep to grow?
  - How to handle continuous attributes?
  - How to choose an appropriate attributes selection measure?
  - How to handle data with missing attributes values?
- Advantages
  - Simple to understand and interpret
  - Requires only few observations
  - Words, best and expected values can be determined for different scenarios
- Disadvantages
  - ► Information Gain criterion is biased in favor of attributes with more levels
  - Calculations become complex if values are uncertain and/or outcomes are linked

# k-Means Clustering

Partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster



- Computationally expensive; instead, we use efficient heuristics
- Default: Euclidean distance as metric and variance as a measure of cluster scatter

## Outline

#### 1 Recap

#### 2 Linear Discriminants

- 3 Artificial Neural Networks
- 4 Support Vector Machines
- 5 Prediction Performance
- 6 Wrap-Up

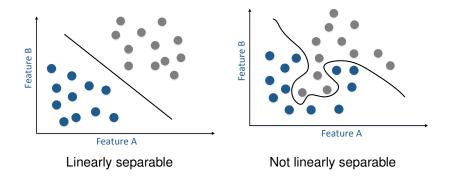
Data Mining, with Linear Discriminants: Linear Discriminants

## **Classification Problems**

- General classification problem
  - Goal: Take a new input  $\boldsymbol{x}$  and assign it to one of K classes  $C_k$
  - Given training set  $X = [\mathbf{x}_1 | \dots | \mathbf{x}_n]^T$ with target values  $T = [\mathbf{t}_1, \dots, \mathbf{t}_n]^T$
  - Number of dimensions D, i. e.  $\boldsymbol{x}_i \in \mathbb{R}^D$
  - Learn a discriminant function y(x) to perform the classification
- ► 2-class problem with binary target values t<sub>i</sub> ∈ {0,1} → Decide for class C<sub>1</sub> if y(x) > 0, else for class C<sub>2</sub>
- ► *K*-class problem with 1-of-*K* coding scheme, i. e.  $t_i \in [0, 1, 0, 0, 0]^T$

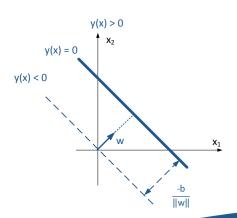
## Linear Separability

 If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable



## Linear Discriminant Functions

- Decision boundary given by  $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$  defines a hyperplane
- Classes labeled according to sign  $(\boldsymbol{w}^T \boldsymbol{x} + b)$
- Normal vector w and offset  $-\frac{b}{\|w\|}$



## Learning Discriminant Functions

Linear discriminant functions given by

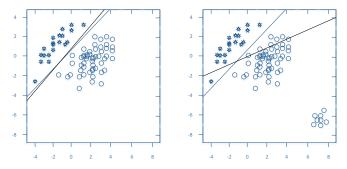
$$y(\mathbf{x}) = \mathbf{w}^{T}\mathbf{x} + b = \sum_{i=1}^{D} w_{i}x_{i} + b$$
$$= \sum_{i=0}^{D} \tilde{w}_{i}\tilde{x}_{i} \quad \text{with } \tilde{x}_{0} = 1$$

- Weight vector w
- ▶ "Bias" b, i. e. threshold
- Goal: Choose w and b, or  $\tilde{w}$  respectively, such that

$$\begin{pmatrix} \boldsymbol{w}^{\mathsf{T}}\boldsymbol{X} + \begin{bmatrix} \boldsymbol{b} \\ \vdots \\ \boldsymbol{b} \end{bmatrix} \end{pmatrix} - \begin{bmatrix} \boldsymbol{t}_1 \\ \vdots \\ \boldsymbol{t}_n \end{bmatrix} \quad \Leftrightarrow \quad \tilde{\boldsymbol{w}}^{\mathsf{T}}\tilde{\boldsymbol{X}} - \boldsymbol{T} \quad \text{is minimal}$$

# **Choosing Discriminant Function**

- Solving  $\tilde{\boldsymbol{w}}^T \tilde{\boldsymbol{X}} T$  by least-squares has drawbacks
  - Least-squares is very sensitive to outliers
  - Error function penalizes predictions that are "too correct"
  - Works only for linearly separable problems
  - Least-squares assumes Gaussian distribution



 Alternative solutions (e.g. in blue): Generalized linear models (→ neural networks), support vector machines, etc.

 $\rightarrow$  from Leibe (2010).

Data Mining, with Linear Discriminants: Linear Discriminants

## Outline

#### 1 Recap

- 2 Linear Discriminants
- 3 Artificial Neural Networks
- 4 Support Vector Machines
- 5 Prediction Performance
- 6 Wrap-Up

#### Generalized Linear Model

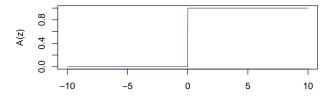
Linear model

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

Generalized linear model with activation function A

$$y(\mathbf{x}) = A(\mathbf{w}^T\mathbf{x} + b)$$

Other than least-squares, choice of activation function should limit influence of outliers, e.g. using a threshold as A



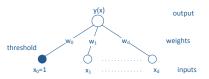
## Relationship to Neural Networks

In 2-class case

$$y(\boldsymbol{x}) = \sum_{i=0}^{D} A(w_i x_i)$$

with  $x_0 = 1$ 

Single-layer perceptron

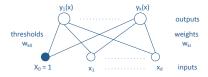


► In multi-class case

$$y_k(\boldsymbol{x}) = \sum_{i=0}^{D} \mathsf{A}(w_{k,i}x_i)$$

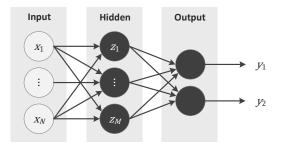
with  $x_0 = 1$ 

Multi-class perceptron



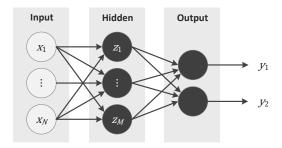
## Artificial Neural Networks

- ► Artificial neural networks (ANN) are computational models to compute *f* : *X* → *Y*, inspired by the central nervous system
- Compute *f* by feeding information through the network
- Represented as a system of connected neurons
- ANNs are universal approximators among continuous functions (under certain mild assumptions)



#### Layers in Neural Networks

- Neurons are arranged in three (or more) layers
  - First layer: Input neurons receive the input vector  $\mathbf{x} \in X$
  - Hidden layer(s): Connect input and output neurons
  - ► Final layer: Output neurons compute a response  $\tilde{y} \in Y$



When neurons are connected as a directed graph without cycles, this is called a feed-forward ANN

## Feeding Information through Neural Networks

► Input z<sub>j</sub> of each neuron j = 1,..., M is a weighted sum of all previous neurons calculated as

$$z_j = \mathsf{A}\left(w_{0,j} + \sum_{i=1}^N w_{i,j} x_i\right) = \mathsf{A}\left(w_{0,j} + \boldsymbol{w}_j^T \boldsymbol{x}\right)$$

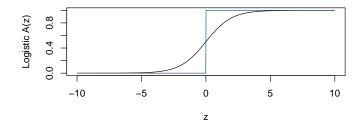
where

- x<sub>i</sub> are the values from the input layer
- suitable coefficients  $w_{i,j}$  for i = 1, ..., N and j = 1, ..., M
- Predefined non-linear function A is referred to as the activation function
- Frequent choice: Logistic function

$$A(z) = \frac{1}{1 + e^{-z}}$$

• Coefficients  $w_{i,j}$  learned from e.g. a back-propagation algorithm

#### Logistic Function



Resembles a threshold function

$$A(z) pprox egin{cases} 0, & z < 0, \ 1, & z > 0 \end{cases}$$

## Neural Networks in R

Loading required library nnet

library(nnet)

Accessing credit scores

```
library(caret)
data(GermanCredit)
```

 Split data into index subset for training (20%) and testing (80%) instances

inTrain <- runif(nrow(GermanCredit)) < 0.2</pre>

#### Neural Networks in R

Train neural network with n nodes in the hidden layer via nnet(formula, data=d, size=n ...)

```
## # weights: 946
## initial value 139.233471
## iter 10 value 120,009852
## iter 20 value 111.986450
## iter 30 value 92.182560
## iter 40 value 88,672309
## iter 50 value 85.914152
## iter 60 value 85,220372
## iter 70 value 85,121310
## iter 80 value 85.061444
## iter 90 value 84.634114
## iter 100 value 81,262052
## final value 81.262052
## stopped after 100 iterations
```

## Neural Networks in R

Confusion matrix via table (pred=pred\_classes, true=true\_classes)

Calculate accuracy

```
sum(diag(cm))/sum(sum(cm))
## [1] 0.7387
```

## Outline

#### 1 Recap

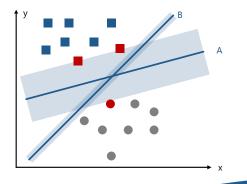
- 2 Linear Discriminants
- 3 Artificial Neural Networks
- 4 Support Vector Machines
  - 5 Prediction Performance

#### 6 Wrap-Up

Data Mining, with Linear Discriminants: Support Vector Machines

# Support Vector Machine (SVM)

- Which of these linear separators is optimal?
- Idea: Maximize separating margin (here: A)
  - Data points on the margin are called support vectors
  - When calculating decision boundary, only support vectors matter; other training data is ignored
  - Formulation as convex optimization problem with global solution



# SVM in R

► Loading required library e1071

library(e1071)

Accessing credit scores

```
library(caret)
data(GermanCredit)
```

 Split data into index subset for training (20%) and testing (80%) instances

inTrain <- runif(nrow(GermanCredit)) < 0.2</pre>

# SVM in R

 Train support vector machine for classification via svm(formula, data=d, type="C-classification")

 Predict credit scores for testing instances test via predict (svm, test)

```
pred <- predict(model, GermanCredit[-inTrain, ])
head(cbind(pred, GermanCredit$Class[-inTrain]))</pre>
```

| ## |   | pred |   |
|----|---|------|---|
| ## | 2 | 2    | 1 |
| ## | 3 | 2    | 2 |
| ## | 4 | 2    | 2 |
| ## | 5 | 2    | 1 |
| ## | 6 | 2    | 2 |
| ## | 7 | 2    | 2 |

First row gives predicted outcomes, second are actual (true) values

# SVM in R

Confusion matrix via

table(pred=pred\_classes, true=true\_classes)

Calculate accuracy

sum(diag(cm))/sum(sum(cm))
## [1] 0.7558

#### Outline

#### 1 Recap

- 2 Linear Discriminants
- 3 Artificial Neural Networks
- 4 Support Vector Machines
- 5 Prediction Performance
- 6 Wrap-Up

#### Assessment of Models

- Predictive performance (measured by accuracy, recall, F1, ROC, ...)
- 2 Computation time for both model building and predicting
- 3 Robustness to noise in predictor values
- 4 Scalability
- 5 Interpretability  $\rightarrow$  transparency, ease of understanding

| Model             | Allows<br>n < k | Interpret. | # Tuning<br>Parameters | Robust to<br>Predictor Noise | Comp.<br>Time |
|-------------------|-----------------|------------|------------------------|------------------------------|---------------|
| Linear Regression | X               | 1          | 0                      | ×                            | 1             |
| ANN               | ✓               | ×          | 1–2                    | ×                            | X             |
| SVM/SVR           | ✓               | ×          | 1–3                    | ×                            | X             |
| <i>k</i> -NN      | ✓               | ×          | 1                      | 0                            | ✓             |
| Single Tree       | 1               | 0          | 1                      | ✓                            | 1             |
| Random Forest     | 1               | ×          | 0—1                    | ✓                            | X             |
| Boosted Trees     | 1               | ×          | 3                      | ✓                            | ×             |

→ from Kuhn & Johnson (2013). Applied Predictive Modeling.

#### Accuracy vs. Precision

Accuracy Closeness to the actual (true) value

Precision Similarity of repeated measurements under unchanged conditions





ightarrow High accuracy, but low precision ightarrow High precision, but low accuracy

# **Confusion Matrix**

Confusion matrix (also named contingency table or error matrix) displays predictive performance

|                     | Condition (as determ                                          |                                                                                                                                |                                                                   |
|---------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                     | True                                                          | False                                                                                                                          |                                                                   |
| Positive<br>Outcome | True Positive (TP)                                            | $\begin{array}{l} \mbox{False Positive (FP)} \\ \rightarrow \mbox{Type I Error} \\ \rightarrow \mbox{False Alarm} \end{array}$ | Precision or<br>Positive Predictive Value<br>$= \frac{TP}{TP+FP}$ |
| Negative<br>Outcome | False Negative (FN) $\rightarrow$ Type II Error / Miss        | True Negative (TN)                                                                                                             |                                                                   |
|                     | Sensitivity <sup>†</sup><br>= TP Rate<br>= $\frac{TP}{TP+FN}$ | Specificity<br>= TN Rate<br>= $\frac{TN}{FP+TN}$                                                                               | $\frac{\textbf{Accuracy}}{=\frac{TP+TN}{\text{Total}}}$           |

<sup>†</sup> Equivalent with hit rate and recall

## **Confusion Matrix**

Example: Blood probe to test for cancer

|                                | Patient v                                        |                                                  |                                                         |
|--------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|
|                                | True                                             | False                                            |                                                         |
| Positive Blood<br>Test Outcome | TP: Cancer correctly diagnosed                   | FP: Healthy person<br>diagnosed cancer           | $\frac{\text{Precision}}{TP+FP}$                        |
| Negative Blood<br>Test Outcome | FN: Cancer<br>not diagnosed                      | TN: Healthy person diagnosed as healthy          |                                                         |
|                                | Sensitivity<br>= TP Rate<br>= $\frac{TP}{TP+FN}$ | Specificity<br>= TN Rate<br>= $\frac{TN}{FP+TN}$ | $\frac{\textbf{Accuracy}}{=\frac{TP+TN}{\text{Total}}}$ |

Different loss functions: Redundant,  $\in$  1000 check in FP case, compared to lethal outcome in FN case

## Assessing Prediction Performance

Imagine the following confusion matrix with an accuracy of 65%

|                                | Patient with Cancer                                        |                                            |                                                               |
|--------------------------------|------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|
|                                | True                                                       | False                                      |                                                               |
| Positive Blood<br>Test Outcome | <i>TP</i> = 60                                             | FP = 5                                     | $\frac{\text{Precision}}{\frac{TP}{TP+FP}} \approx 0.92$      |
| Negative Blood<br>Test Outcome | <i>FN</i> = 30                                             | <i>TN</i> = 5                              |                                                               |
|                                | $\frac{\text{Sensitivity}}{\frac{TP}{TP+FN}} \approx 0.67$ | Specificity<br>= $\frac{TN}{FP+TN} = 0.50$ | $\frac{\textbf{Accuracy}}{\frac{TP+TN}{\text{Total}}} = 0.65$ |

Is this a "good" result? No, because of unevenly distributed data, a model which always guesses positive will score an accuracy of 60%

# Prediction Performance in R

Confusion matrix in variable cm

| ## |     | True | False |
|----|-----|------|-------|
| ## | Pos | 30   | 10    |
| ## | Neg | 20   | 40    |

### Calculating accuracy

```
(cm[1,1]+cm[2,2])/
(cm[1,1]+cm[1,2]+cm[2,1]+cm[2,2])
## [1] 0.7
# Alternative that works also for multi-class data
sum(diag(cm))/sum(sum(cm))
## [1] 0.7
```

Calculating precision

```
cm[1, 1]/(cm[1, 1] + cm[1, 2])
## [1] 0.75
```

# Trade-Off: Sensitivity vs. Specificity/Precision

- Performance goals frequently place more emphasis on either sensitivity or specificity/precision
  - Example: Airport scanners triggered on low-risk items like belts (low precision), but reduce risk of missing risky objects (high sensitivity)
- ► Trade-Off: F1 score is the harmonic mean of precision and sensitivity

$$F1 = \frac{2 TP}{2 TP + FP + FN}$$

Visualized by receiver operating characteristic (ROC) curve

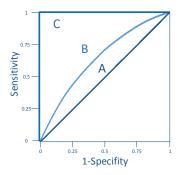
# Receiver Operating Characteristic (ROC)

ROC illustrates performance of binary classifier as its discrimination threshold  $y(\mathbf{x})$  is varied

#### Interpretation:

- Curve A is random guessing (50% correct guesses)
- Curve from model B performs better than A, but worse than C
- Curve C from perfect prediction

Area south-east of curve is named area under the curve and should be maximized



# ROC in R

Load required library pROC

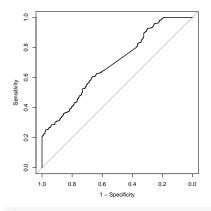
```
library(pROC)
```

► Perform prediction and retrieve decision values dv

# ROC in R

#### ▶ Plot ROC curve via plot.roc(classes, dv)

plot.roc(as.numeric(GermanCredit\$Class[-inTrain]), dv, xlab = "1 - Specificity")





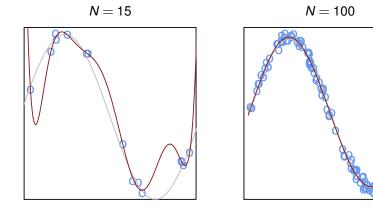
# Predictive vs. Explanatory Power

Significant difference between predicting and explaining:

#### 1 Empirical Models for Prediction

- Empirical predictive models (e.g. statistical models, methods from data mining) designed to predict new/future observations
- Predictive Analytics describes the evaluation of the predictive power, such as accuracy or precision
- 2 Empirical Models for Explanation
  - Any type of statistical model used for testing causal hypothesis
  - ► Use methods for evaluating the explanatory power, such as statistical tests or measures like R<sup>2</sup>

## Predictive vs. Explanatory Power

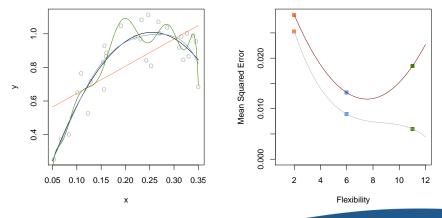


- Explanatory power does not imply predictive power
  - Red is the best explanatory model; gray the best predictive
  - In particular, dummies do not translate well to predictive modes
- Do not write something like "the regression proves the predictive power of regressor x<sub>i</sub>"

Data Mining, with Linear Discriminants: Prediction Performance

# Overfitting

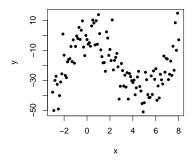
- When learning algorithm is performed for too long, the learner may adjust to very specific random features not related to the target function
- Overfitting: Performance on training data (in gray) still increases, while the performance on unseen data (in red) becomes worse



# Overfitting in R

#### Given data $\boldsymbol{x}$ to predict $\boldsymbol{y}$

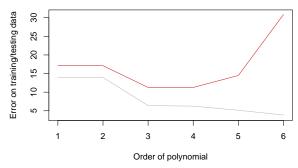
**plot**(x, y, pch = 20)



# Estimate polynomials of order P = 1, ..., 6 and compare errors on training and testing data

# Overfitting in R

Performance on training data (in gray) still increases, while the performance on unseen data (in red) becomes worse



Data Mining, with Linear Discriminants: Prediction Performance

## Support Vector Regression in R

- Support vector regression (SVR) predicts continuous values
- Accessing weekly stock market returns for 21 years

```
library(ISLR)
data(Weekly)
inTrain <- runif(nrow(Weekly)) < 0.2</pre>
```

▶ When training, use type="eps-regression" instead

Compute root mean square error (RMSE)

```
pred <- predict(model, Weekly[-inTrain, ])
sqrt(mean(pred - Weekly$Today[-inTrain])^2)</pre>
```

## [1] 0.1278

given by RMSE =  $\sqrt{\frac{1}{N} \sum_{i=1}^{N} (\text{pred}_i - \text{true}_i)^2}$  and compare to standard deviation of  $\sigma^2 = 2.3536$  (*N* in denominator, not *N* – 1)

## Outline

#### 1 Recap

- 2 Linear Discriminants
- 3 Artificial Neural Networks
- 4 Support Vector Machines
- 5 Prediction Performance

## 6 Wrap-Up

## Summary: Data Mining with Linear Discriminants

| Linearly separable        | Data can be perfectly classified by linear discriminant                             |  |
|---------------------------|-------------------------------------------------------------------------------------|--|
| Artificial neural network | Feeding information through the network $\rightarrow$ nnet(formula, data=d, size=n) |  |
| Support vector machine    | Maximize separating margin<br>→ svm(formula, data=d, type=)                         |  |
| Confusion matrix          | Tabular outline of correct/incorrect guesses                                        |  |
| Predictive performance    | Measured by accuracy, precision,                                                    |  |
| ROC curve                 | Visualize trade-off between sensitivity and specificity                             |  |
| Overfitting               | Performance on training data increases, different from unseen observations          |  |