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Today’s Lecture

Objectives

1 Recognizing the ideas of artificial neural networks and their use in R

2 Understanding the concept and the usage of support vector machines

3 Being able to evaluate the predictive performance in terms of both
metrics and the receiver operating characteristic curve

4 Distinguishing predictive and explanatory power
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Supervised vs. Unsupervised Learning

Supervised learning

I Machine learning task of inferring a function from labeled training data

I Training data includes both the input and the desired results
→ correct results (target values) are given

Unsupervised learning

I Methods try to find hidden structure in unlabeled data

I The model is not provided with the correct results during the training

I No error or reward signal to evaluate a potential solution
I Examples:

I Hidden Markov models
I Dimension reduction (e. g. by principal component analysis)
I Clustering (e. g. by k -means algorithm)
→ group into classes on the basis of their statistical properties only
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Taxonomy of Machine Learning
I Machine learning estimates function and parameter in y = f (x ,w)

I Type of method varies depending on the nature of what is predicted

I Regression
I Predicted value refers to a real number
I Continuous y

I Classification
I Predicted value refers to a class label
I Discrete y (e. g. class membership)

I Clustering
I Group points into clusters based on how

"near" they are to one another
I Identify structure in data
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K -Nearest Neighbor Classification

I Input: training examples as vectors
in a multidimensional feature space,
each with a class label

I No training phase to calculate
internal parameters

I Testing: Assign to class according to
k -nearest neighbors

I Classification as majority vote
I Problematic

I Skewed data
I Unequal frequency of classes

?

→What label to assign to the circle?
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Decision Trees
I Flowchart-like structure in which nodes represent tests on attributes

I End nodes (leaves) of each branch represent class labels

I Example: Decision tree for playing tennis

Outlook

Humidity Wind

Sunny Rain

Overcast

Yes

Normal Strong WeakHigh

No Yes No Yes
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Decision Trees
I Issues

I How deep to grow?
I How to handle continuous attributes?
I How to choose an appropriate attributes selection measure?
I How to handle data with missing attributes values?

I Advantages
I Simple to understand and interpret
I Requires only few observations
I Words, best and expected values can be determined for different

scenarios
I Disadvantages

I Information Gain criterion is biased in favor of attributes with more levels
I Calculations become complex if values are uncertain and/or outcomes

are linked
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k -Means Clustering
I Partition n observations into k clusters in which each observation

belongs to the cluster with the nearest mean, serving as a prototype of
the cluster
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I Computationally expensive; instead, we use efficient heuristics

I Default: Euclidean distance as metric and variance as a measure of
cluster scatter
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Classification Problems
I General classification problem

I Goal: Take a new input x and assign it to one of K classes Ck
I Given training set X = [x1 | . . . | xn]

T

with target values T = [t1, . . . , tn]
T

I Number of dimensions D, i. e. x i ∈ RD

I Learn a discriminant function y(x) to perform the classification

I 2-class problem with binary target values ti ∈ {0,1}
→ Decide for class C1 if y(x)> 0, else for class C2

I K -class problem with 1-of-K coding scheme, i. e. t i ∈ [0,1,0,0,0]T
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Linear Separability
I If a data set can be perfectly classified by a linear discriminant, then

we call it linearly separable
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Linear Discriminant Functions
I Decision boundary given by y(x) = wT x +b = 0 defines a hyperplane

I Classes labeled according to sign
(
wT x +b

)
I Normal vector w and offset −

b

‖w‖

x1

x2

w

y(x) = 0

y(x) < 0

y(x) > 0
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Learning Discriminant Functions
I Linear discriminant functions given by

y(x) = wT x +b =
D

∑
i=1

wixi +b

=
D

∑
i=0

w̃i x̃i with x̃0 = 1

I Weight vector w
I "Bias" b, i. e. threshold

I Goal: Choose w and b, or w̃ respectively, such thatwT X +

 b
...
b


−

 t1
...
tn

 ⇔ w̃T X̃ −T is minimal
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Choosing Discriminant Function
I Solving w̃T X̃ −T by least-squares has drawbacks

I Least-squares is very sensitive to outliers
I Error function penalizes predictions that are "too correct"
I Works only for linearly separable problems
I Least-squares assumes Gaussian distribution
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I Alternative solutions (e. g. in blue): Generalized linear models
(→ neural networks), support vector machines, etc.

→ from Leibe (2010).
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Generalized Linear Model
I Linear model

y(x) = wT x +b

I Generalized linear model with activation function A

y(x) = A
(
wT x +b

)
I Other than least-squares, choice of activation function should limit

influence of outliers, e. g. using a threshold as A
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Relationship to Neural Networks

I In 2-class case

y(x) =
D

∑
i=0

A(wixi)

with x0 = 1

I Single-layer perceptron

w1w0 wd

y(x)

x0=1 x1 xd

output

weights

inputs

threshold

I In multi-class case

yk(x) =
D

∑
i=0

A(wk ,ixi)

with x0 = 1

I Multi-class perceptron
y1(x)

X0 = 1 x1 xd

outputs

weights
wki

inputs

thresholds
wk0

yk(x)

19Data Mining, with Linear Discriminants: Neural Networks



Artificial Neural Networks
I Artificial neural networks (ANN) are computational models to compute

f : X 7→ Y , inspired by the central nervous system

I Compute f by feeding information through the network

I Represented as a system of connected neurons

I ANNs are universal approximators among continuous functions (under
certain mild assumptions)

OutputHiddenInput
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Layers in Neural Networks
I Neurons are arranged in three (or more) layers

I First layer: Input neurons receive the input vector x ∈ X
I Hidden layer(s): Connect input and output neurons
I Final layer: Output neurons compute a response ỹ ∈ Y

OutputHiddenInput

z1

⋮

zM

y1

y2

x1

⋮

xN

I When neurons are connected as a directed graph without cycles, this
is called a feed-forward ANN

21Data Mining, with Linear Discriminants: Neural Networks



Feeding Information through Neural Networks
I Input zj of each neuron j = 1, . . . ,M is a weighted sum of all previous

neurons calculated as

zj = A

(
w0,j +

N

∑
i=1

wi,jxi

)
= A

(
w0,j +wT

j x
)

where
I xi are the values from the input layer
I suitable coefficients wi,j for i = 1, . . . ,N and j = 1, . . . ,M

I Predefined non-linear function A is referred to as the activation function

I Frequent choice: Logistic function

A(z) =
1

1+e−z

I Coefficients wi,j learned from e. g. a back-propagation algorithm
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Logistic Function
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I Resembles a threshold function

A(z)≈

{
0, z < 0,

1, z > 0
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Neural Networks in R
I Loading required library nnet

library(nnet)

I Accessing credit scores

library(caret)
data(GermanCredit)

I Split data into index subset for training (20%) and testing (80%)
instances

inTrain <- runif(nrow(GermanCredit)) < 0.2
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Neural Networks in R
I Train neural network with n nodes in the hidden layer via
nnet(formula, data=d, size=n ...)

nn <- nnet(Class ~ ., data=GermanCredit[inTrain,],
size=15, maxit=100, rang=0.1, decay=5e-4)

## # weights: 946
## initial value 139.233471
## iter 10 value 120.009852
## iter 20 value 111.986450
## iter 30 value 92.182560
## iter 40 value 88.672309
## iter 50 value 85.914152
## iter 60 value 85.220372
## iter 70 value 85.121310
## iter 80 value 85.061444
## iter 90 value 84.634114
## iter 100 value 81.262052
## final value 81.262052
## stopped after 100 iterations
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Neural Networks in R
I Predict credit scores via
predict(nn, test, type="class")

pred <- predict(nn, GermanCredit[-inTrain,],
type="class")

I Confusion matrix via
table(pred=pred_classes, true=true_classes)

cm <- table(pred=pred,
true=GermanCredit$Class[-inTrain])

I Calculate accuracy

sum(diag(cm))/sum(sum(cm))

## [1] 0.7387
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Support Vector Machine (SVM)
I Which of these linear separators is optimal?
I Idea: Maximize separating margin (here: A)

I Data points on the margin are called support vectors
I When calculating decision boundary, only support vectors matter; other

training data is ignored
I Formulation as convex optimization problem with global solution

B

A

x

y
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SVM in R
I Loading required library e1071

library(e1071)

I Accessing credit scores

library(caret)
data(GermanCredit)

I Split data into index subset for training (20%) and testing (80%)
instances

inTrain <- runif(nrow(GermanCredit)) < 0.2
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SVM in R
I Train support vector machine for classification via
svm(formula, data=d, type="C-classification")

model <- svm(Class ~ ., data=GermanCredit[inTrain,],
type="C-classification")

I Predict credit scores for testing instances test via
predict(svm, test)

pred <- predict(model, GermanCredit[-inTrain, ])
head(cbind(pred, GermanCredit$Class[-inTrain]))

## pred
## 2 2 1
## 3 2 2
## 4 2 2
## 5 2 1
## 6 2 2
## 7 2 2

I First row gives predicted outcomes, second are actual (true) values
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SVM in R
I Confusion matrix via
table(pred=pred_classes, true=true_classes)

cm <- table(pred=pred,
true=GermanCredit$Class[-inTrain])

cm

## true
## pred Bad Good
## Bad 57 1
## Good 243 698

I Calculate accuracy

sum(diag(cm))/sum(sum(cm))

## [1] 0.7558
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Assessment of Models

1 Predictive performance (measured by accuracy, recall, F1, ROC, . . . )

2 Computation time for both model building and predicting

3 Robustness to noise in predictor values

4 Scalability

5 Interpretability→ transparency, ease of understanding

Model Allows
n < k

Interpret. # Tuning
Parameters

Robust to
Predictor Noise

Comp.
Time

Linear Regression 7 3 0 7 3

ANN 3 7 1–2 7 7

SVM/SVR 3 7 1–3 7 7

k -NN 3 7 1 o 3

Single Tree 3 o 1 3 3

Random Forest 3 7 0–1 3 7

Boosted Trees 3 7 3 3 7

→ from Kuhn & Johnson (2013). Applied Predictive Modeling.
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Accuracy vs. Precision

Accuracy Closeness to the actual (true) value

Precision Similarity of repeated measurements under unchanged
conditions

→ High accuracy, but low precision → High precision, but low accuracy
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Confusion Matrix

Confusion matrix (also named contingency table or error matrix) displays
predictive performance

Condition (as determined by Gold standard)

True False

Positive
Outcome

True Positive (TP) False Positive (FP)
→ Type I Error
→ False Alarm

Precision or
Positive Predictive Value

= TP
TP+FP

Negative
Outcome

False Negative (FN)
→ Type II Error / Miss

True Negative (TN)

Sensitivity†

= TP Rate
= TP

TP+FN

Specificity
= TN Rate
= TN

FP+TN

Accuracy
= TP+TN

Total

† Equivalent with hit rate and recall
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Confusion Matrix

Example: Blood probe to test for cancer

Patient with Cancer

True False

Positive Blood
Test Outcome

TP: Cancer
correctly diagnosed

FP: Healthy person
diagnosed cancer

Precision
= TP

TP+FP

Negative Blood
Test Outcome

FN: Cancer
not diagnosed

TN: Healthy person
diagnosed as healthy

Sensitivity
= TP Rate
= TP

TP+FN

Specificity
= TN Rate
= TN

FP+TN

Accuracy
= TP+TN

Total

Different loss functions: Redundant, e1000 check in FP case, compared to
lethal outcome in FN case
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Assessing Prediction Performance

Imagine the following confusion matrix with an accuracy of 65%

Patient with Cancer

True False

Positive Blood
Test Outcome

TP = 60 FP = 5 Precision
= TP

TP+FP ≈ 0.92

Negative Blood
Test Outcome

FN = 30 TN = 5

Sensitivity
= TP

TP+FN ≈ 0.67
Specificity

= TN
FP+TN = 0.50

Accuracy
= TP+TN

Total = 0.65

Is this a "good" result? No, because of unevenly distributed data, a model
which always guesses positive will score an accuracy of 60%
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Prediction Performance in R
I Confusion matrix in variable cm

## True False
## Pos 30 10
## Neg 20 40

I Calculating accuracy

(cm[1,1]+cm[2,2])/
(cm[1,1]+cm[1,2]+cm[2,1]+cm[2,2])

## [1] 0.7

# Alternative that works also for multi-class data
sum(diag(cm))/sum(sum(cm))

## [1] 0.7

I Calculating precision

cm[1, 1]/(cm[1, 1] + cm[1, 2])

## [1] 0.75
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Trade-Off: Sensitivity vs. Specificity/Precision
I Performance goals frequently place more emphasis on either

sensitivity or specificity/precision
I Example: Airport scanners triggered on low-risk items like belts (low

precision), but reduce risk of missing risky objects (high sensitivity)

I Trade-Off: F1 score is the harmonic mean of precision and sensitivity

F1 =
2TP

2TP +FP +FN

I Visualized by receiver operating characteristic (ROC) curve
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Receiver Operating Characteristic (ROC)

ROC illustrates performance of binary
classifier as its discrimination threshold
y(x) is varied

Interpretation:
I Curve A is random guessing (50%

correct guesses)

I Curve from model B performs better
than A, but worse than C

I Curve C from perfect prediction

Area south-east of curve is named area
under the curve and should be maximized
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ROC in R
I Load required library pROC

library(pROC)

I Perform prediction and retrieve decision values dv

pred <- predict(model, GermanCredit[-inTrain,],
decision.values=TRUE)

dv <- attributes(pred)$decision.values
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ROC in R
I Plot ROC curve via plot.roc(classes, dv)

plot.roc(as.numeric(GermanCredit$Class[-inTrain]), dv, xlab = "1 - Specificity")
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##
## Call:
## plot.roc.default(x = as.numeric(GermanCredit$Class[-inTrain]), predictor = dv, xlab = "1 - Specificity")
##
## Data: dv in 300 controls (as.numeric(GermanCredit$Class[-inTrain]) 1) > 699 cases (as.numeric(GermanCredit$Class[-inTrain]) 2).
## Area under the curve: 0.692
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Predictive vs. Explanatory Power

Significant difference between predicting and explaining:

1 Empirical Models for Prediction
I Empirical predictive models (e. g. statistical models, methods from data

mining) designed to predict new/future observations
I Predictive Analytics describes the evaluation of the predictive power,

such as accuracy or precision

2 Empirical Models for Explanation
I Any type of statistical model used for testing causal hypothesis
I Use methods for evaluating the explanatory power, such as statistical

tests or measures like R2

43Data Mining, with Linear Discriminants: Prediction Performance



Predictive vs. Explanatory Power
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I Explanatory power does not imply predictive power
I Red is the best explanatory model; gray the best predictive
I In particular, dummies do not translate well to predictive modes

I Do not write something like "the regression proves the predictive power
of regressor xi "
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Overfitting
I When learning algorithm is performed for too long, the learner may

adjust to very specific random features not related to the target function

I Overfitting: Performance on training data (in gray) still increases, while
the performance on unseen data (in red) becomes worse
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Overfitting in R

Given data x to predict y

plot(x, y, pch = 20)
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Estimate polynomials of order
P = 1, . . . ,6 and compare errors on
training and testing data

inTrain <- runif(length(x)) < 0.2

err.fit <- c()
err.pred <- c()

for (i in 1:6)
{

# Explanatory model
xx <- x[inTrain]
m <- lm(y[inTrain] ~

poly(xx, i, raw=TRUE))
err.fit[i] <- sqrt(mean(m$residuals^2))

# Predictive model
xx <- x[-inTrain]
err <- predict(m,

poly(xx, i, raw=TRUE))-y[-inTrain]
err.pred[i] <- sqrt(mean(err^2))

}
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Overfitting in R
I Performance on training data (in gray) still increases, while the

performance on unseen data (in red) becomes worse

plot(1:6, err.fit, type='l', ylim=c(3.5, 31), col="gray",
xlab="Order of polynomial", ylab="Error on training/testing data")

lines(1:6, err.pred, col="firebrick3")
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Support Vector Regression in R
I Support vector regression (SVR) predicts continuous values
I Accessing weekly stock market returns for 21 years

library(ISLR)
data(Weekly)
inTrain <- runif(nrow(Weekly)) < 0.2

I When training, use type="eps-regression" instead
model <- svm(Today ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5,

data=Weekly[inTrain,], type="eps-regression")

I Compute root mean square error (RMSE)
pred <- predict(model, Weekly[-inTrain, ])
sqrt(mean(pred - Weekly$Today[-inTrain])^2)

## [1] 0.1278

given by RMSE =

√
1
N

N

∑
i=1

(predi − truei)2 and compare to standard

deviation of σ2 = 2.3536 (N in denominator, not N−1)

48Data Mining, with Linear Discriminants: Prediction Performance



Outline

1 Recap

2 Linear Discriminants

3 Artificial Neural Networks

4 Support Vector Machines

5 Prediction Performance

6 Wrap-Up

49Data Mining, with Linear Discriminants: Wrap-Up



Summary: Data Mining with Linear Discriminants

Linearly separable Data can be perfectly classified by linear discriminant

Artificial neural network Feeding information through the network
→ nnet(formula, data=d, size=n ...)

Support vector machine Maximize separating margin
→ svm(formula, data=d, type=...)

Confusion matrix Tabular outline of correct/incorrect guesses

Predictive performance Measured by accuracy, precision, . . .

ROC curve Visualize trade-off between sensitivity and specificity

Overfitting Performance on training data increases, different from
unseen observations
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