Text Mining

Exercise: Business Intelligence (Part 7) Summer Term 2014 Stefan Feuerriegel

Today's Lecture

Objectives

- Being able to perform preprocessing steps for text mining
- 2 Learning the representation as a term-document matrix
- 3 Understanding how a dictionary-based sentiment analysis works

Outline

1 Recap

- 2 Text Mining
- 3 Excursus: Sentiment Analysis

Outline

2 Text Mining

3 Excursus: Sentiment Analysis

Artificial Neural Networks

- Neurons are arranged in three (or more) layers
 - First layer: Input neurons receive the input vector $\mathbf{x} \in X$
 - Hidden layer(s): Connect input and output neurons
 - ► Final layer: Output neurons compute a response $\tilde{y} \in Y$

 When neurons are connected as a directed graph without cycles, this is called a feed-forward ANN

Support Vector Machine (SVM)

- Which of these linear separators is optimal?
- Idea: Maximize separating margin (here: A)
 - Data points on the margin are called support vectors
 - When calculating decision boundary, only support vectors matter; other training data is ignored
 - Formulation as convex optimization problem with global solution

Predictive Performance

Confusion matrix (also named contingency table or error matrix) displays predictive performance

	Condition (as determ		
	True	False	
Positive Outcome	True Positive (TP)	$\begin{array}{l} \mbox{False Positive (FP)} \\ \rightarrow \mbox{Type I Error} \\ \rightarrow \mbox{False Alarm} \end{array}$	Precision or Positive Predictive Value $= \frac{TP}{TP+FP}$
Negative Outcome	False Negative (FN) \rightarrow Type II Error / Miss	True Negative (TN)	
	Sensitivity [†] = TP Rate = $\frac{TP}{TP+FN}$	Specificity = TN Rate = $\frac{TN}{FP+TN}$	$\frac{\textbf{Accuracy}}{=\frac{TP+TN}{Total}}$

[†] Equivalent with hit rate and recall

Receiver Operating Characteristic (ROC)

ROC illustrates trade-off between sensitivity and specificity

Interpretation:

- Curve A is random guessing (50% correct guesses)
- Curve from model B performs better than A, but worse than C
- Curve C from perfect prediction

Area south-east of curve is named area under the curve and should be maximized

Predictive vs. Explanatory Power

Significant difference between predicting and explaining:

Empirical Models for Prediction

- Empirical predictive models (e.g. statistical models, methods from data mining) designed to predict new/future observations
- Predictive Analytics describes the evaluation of the predictive power, such as accuracy or precision
- 2 Empirical Models for Explanation
 - Any type of statistical model used for testing causal hypothesis
 - ► Use methods for evaluating the explanatory power, such as statistical tests or measures like R²

Overfitting

- When learning algorithm is performed for too long, the learner may adjust to very specific random features not related to the target function
- Overfitting: Performance on training data (in gray) still increases, while the performance on unseen data (in red) becomes worse

Outline

1 Recap

2 Text Mining

3 Excursus: Sentiment Analysis

Text Mining

- ► Text mining seeks patterns in textual content, i.e. unstructured data
- ► Idea: Impose (mathematical) structure first, then analyze it
- ► Examples:
 - Summarization
 - Categorization
 - Information extraction
 - Sentiment analysis
- Load necessary library tm in R to do text mining

library(tm)

Outline

2 Text Mining

Creating the Corpus

- Transforming the Corpus
- Term-Document Matrix

Creating the Corpus

- Collection of textual materials are called corpus
- Sources can vary from XML to text files, as well as data frames
- ► Corpus (...) creates data representation from chosen source
- ► Frequently annotated by additional metadata (e.g. time stamps)
- inspect (corpus) displays the structure of a corpus

Example:

Access sample corpus consisting of Reuters crude oil news

Outline

Creating the Corpus

- Transforming the Corpus
- Term-Document Matrix

Corpus Transformation

- Additional operations necessary to transform unstructured text into a mathematical representation
- Perform transformations via tm_map(corpus, trafo)
 - 1 Remove all non-text tokens
 - 2 Make all letters lower case
 - 3 Remove redundant, non-discriminating tokens (numbers & stopwords)
 - 4 Reduce all inflected word forms to common base, i. e. the stem

Example:

"Details are given \rightarrow "detail are giv in section 2." sect"

Example: Removing HTML/XML Tags

```
# Corpus contains documents in XML format; remove the XML tags
if (packageVersion("tm")$minor <= 5) {</pre>
    reuters <- tm map(reuters, as.PlainTextDocument)
} else {
    reuters <- tm map(reuters, PlainTextDocument)
inspect (reuters[1])
## A corpus with 1 text document
##
## The metadata consists of 2 tag-value pairs and a data frame
## Available tags are:
##
     create date creator
## Available variables in the data frame are.
## MetaTD
##
## $`reut-00001.xml`
## DIAMOND SHAMROCK (DIA) CUTS CRUDE PRICES
## NEW YORK, FEB 26 -
## Diamond Shamrock Corp said that
## effective today it had cut its contract prices for crude oil by
## 1.50 dlrs a barrel.
       The reduction brings its posted price for West Texas
##
## Intermediate to 16.00 dlrs a barrel, the copany said.
       "The price reduction today was made in the light of falling
##
## oil product prices and a weak crude oil market," a company
## spokeswoman said.
       Diamond is the latest in a line of U.S. oil companies that
##
## have cut its contract, or posted, prices over the last two days
## citing weak oil markets.
## Reuter
Text Minina: Text Minina
```

Example: Stripping Whitespaces

```
reuters <- tm_map(reuters, stripWhitespace)
inspect (reuters[1])
## A corpus with 1 text document
##
## The metadata consists of 2 tag-value pairs and a data frame
## Available tags are:
    create date creator
##
## Available variables in the data frame are:
##
   MetaID
##
## $`reut-00001.xml`
## DIAMOND SHAMROCK (DIA) CUTS CRUDE PRICES
## NEW YORK, FEB 26 -
## Diamond Shamrock Corp said that effective today it had cut its contract prices for crude oil b
```

Example: Removing punctuations

```
reuters <- tm_map(reuters, removePunctuation)
inspect (reuters[1])
## A corpus with 1 text document
##
## The metadata consists of 2 tag-value pairs and a data frame
## Available tags are:
    create date creator
##
## Available variables in the data frame are:
##
    MetaID
##
## $`reut-00001.xml`
## DIAMOND SHAMROCK DIA CUTS CRUDE PRICES
## NEW YORK FEB 26
## Diamond Shamrock Corp said that effective today it had cut its contract prices for crude oil b
```

Example: Converting to Lower Case

```
reuters <- tm_map(reuters, tolower)
inspect (reuters[1])
## A corpus with 1 text document
##
## The metadata consists of 2 tag-value pairs and a data frame
## Available tags are:
    create date creator
##
## Available variables in the data frame are:
##
    MetaID
##
## $`reut-00001.xml`
## diamond shamrock dia cuts crude prices
## new york feb 26
## diamond shamrock corp said that effective today it had cut its contract prices for crude oil b
```

Example: Removing Numbers

```
reuters <- tm_map (reuters, removeNumbers)
inspect (reuters[1])
## A corpus with 1 text document
##
## The metadata consists of 2 tag-value pairs and a data frame
## Available tags are:
    create date creator
##
## Available variables in the data frame are:
##
    MetaID
##
## $`reut-00001 xml`
## diamond shamrock dia cuts crude prices
## new york feb
## diamond shamrock corp said that effective today it had cut its contract prices for crude oil b
```

Stopwords

- Stopwords are short function words
- Occur frequently but no deep meaning
- Removal of stopwords in order to concentrate on more important words (that are unique/specific for the text)
- Examples: the, is, at, which, and on
- Common approach is to use predefined list of stopwords
- Get such a built-in list via stopwords (language)

```
sw <- stopwords("english")
length(sw)
## [1] 174
head(sw)
## [1] "i" "me" "mv" "mvself" "we" "our"</pre>
```

Example: Removing Stopwords

```
reuters <- tm_map(reuters, removeWords, stopwords("english"))
inspect (reuters[1])
## A corpus with 1 text document
##
## The metadata consists of 2 tag-value pairs and a data frame
## Available tags are:
    create date creator
##
## Available variables in the data frame are:
##
   MetaID
##
## $`reut-00001 xml`
## diamond shamrock dia cuts crude prices
## new york feb
## diamond shamrock corp said effective today cut contract prices crude oil dlrs barrel
```

Stemming

- Stemming is the process of reducing inflected (or sometimes derived) words to their stem, base or root form
- Depending on the algorithm, the stem is not a valid root form, but a shorted form without an ending
- Aims to group words with (possibly) the same meaning
- Examples:
 - fishing, fished, fish, fisher \rightarrow fish
 - argue, argued, argues, arguing, argus \rightarrow argu
 - argument and arguments \rightarrow argument

Example: Stemming

```
reuters <- tm_map(reuters, stemDocument, language = "english")
inspect (reuters[1])
## A corpus with 1 text document
##
## The metadata consists of 2 tag-value pairs and a data frame
## Available tags are:
    create date creator
##
## Available variables in the data frame are:
##
   MetaID
##
## $`reut-00001 xml`
## diamond shamrock dia cut crude price
## new york feb
## diamond shamrock corp said effect today cut contract price crude oil dlrs barrel redu
```

Summary: Corpus Transformations

Perform transformations via tm_map(corpus, trafo)

R Function	Transformation Rule
PlainTextDocument stripWhitespace removePunctuation	Remove HTML/XML tags Eliminate unnecessary spaces, e.g. line breaks Remove punctuation Convert to lower case letters
removeNumbers removeWords stemDocument	Remove all numbers Remove stopwords given by additional parameter Reduce inflected words to stem

 \rightarrow Results can be represented as a term-document matrix for further evaluation

Outline

Text Mining

- Creating the Corpus
- Transforming the Corpus
- Term-Document Matrix

Term-Document Matrix

- Term-document matrix is a mathematical matrix that describes the frequency of terms occurring in documents
- ► Example:
 - ► D₁ = "I like programming"
 - ► D₂ = "I hate hate programming"
 - Term-document matrix given by

	D ₁	<i>D</i> ₂
I	1	1
like	1	0
hate	0	2
programming	1	1

 Term-document matrix is input to further machine learning procedures, such as clustering, classification or prediction

Term-Document Matrix

Create matrix via TermDocumentMatrix (corpus) from corpus

```
tdm <- TermDocumentMatrix (reuters)
inspect (tdm[200:205, 1:5])
## A term-document matrix (6 terms, 5 documents)
##
## Non-/sparse entries: 4/26
  Sparsity
##
          : 87%
## Maximal term length: 10
## Weighting : term frequency (tf)
##
##
         Docs
##
  Terms 127 144 191 194 211
   dhabi 0 0
##
                   0
                      0
##
  dia 1 0 0 0 0
  diamond 3 0 0 0 0
##
  differenti 0 1 0 0 0
##
  difficulti 0 0 0
##
                        0 0
## dillard 0 1 0
                        0
```

Term-Document Matrix

Use findFreqTerms(tdm, n) to find terms that occur at least n times

Retrieve words that occur at least 10 times
findFreqTerms(tdm, 10)

##	[1]	"accord"	"analyst"	"arabia"	"barrel"	"bpd"
##	[6]	"crude"	"dlrs"	"futur"	"govern"	"group"
##	[11]	"increas"	"industri"	"kuwait"	"last"	"march"
##	[16]	"market"	"meet"	"minist"	"mln"	"month"
##	[21]	"new"	"offici"	"oil"	"one"	"opec"
##	[26]	"output"	"pct"	"petroleum"	"post"	"price"
##	[31]	"produc"	"product"	"quota"	"report"	"reserv"
##	[36]	"reuter"	"said"	"saudi"	"say"	"sheikh"
##	[41]	"studi"	"will"	"world"	"year"	

Text Mining Operations

- Associations are terms that frequently occur together in documents
- Measured by correlation between rows in term-document matrix
- findAssocs(tdm, term, p) finds associations with a correlation of at least p for a term

# Fir	nd assc	ciations .	for the	term 'op	ec' with	n a corr	elation	of at lea	st 0.8
findA	ssocs (tdm, "opeo	c", 0.8)						
##	meet	analyst	name	oil	want	emerg	buyer	said	tri
##	0.90	0.86	0.84	0.84	0.84	0.82	0.81	0.81	0.81

Sparsity of Term-Document Matrix

- Problem: Term-document matrices get very big, with many entries at zero
- Removal of these so-called sparse entries by deleting words that occur in less than p (in %) of all documents
 removeSparseTerms (tdm, p)

```
# Removes words that occur in less than 40% of documents
tdm.rm.sparse <- removeSparseTerms(tdm, 0.4)</pre>
inspect(tdm.rm.sparse[, 1:5])
## A term-document matrix (6 terms, 5 documents)
##
## Non-/sparse entries: 23/7
## Sparsity
## Maximal term length: 6
## Weighting : term frequency (tf)
##
##
         127 144 191 194 211
## Terms
  barrel 2 0 1 1
##
  march 0 1 0 0
##
  oil 5 12 2 1 2
##
  price 6 7 2 2 0
##
## reuter 1 3 1 1 1
##
  said 3 11 1 1
```

Analyzing a Dictionary of Terms

Study only a subset of words of interest, specified by dictionary = ...

```
# select relevant terms of interest
d <- c("price", "crude", "oil")</pre>
# term-document matrix is created only for those entries
tdm.small <- TermDocumentMatrix(reuters, list(dictionary = d))</pre>
inspect(tdm.small[, 1:5])
## A term-document matrix (3 terms, 5 documents)
##
## Non-/sparse entries: 12/3
## Sparsity : 20%
## Maximal term length: 5
## Weighting : term frequency (tf)
##
##
  Docs
  Terms 127 144 191 194 211
##
##
  crude 3 0 3 4 0
## oil 5 12 2 1 2
## price 6 7 2 2 0
```

Summary: Term-Document Matrix

 Create term-document matrix from corpus via TermDocumentMatrix (corpus)

R Function	Inspection
<pre>findFreqTerms(tdm, n) findAssocs(tdm, term, p) removeSparseTerms(tdm, p) dictionary =</pre>	Terms occurring at least n times Terms with a correlation of at least p Delete sparse terms with many zeros Select a subset of words

 \rightarrow Term-document matrix is input to machine learning procedures, such as clustering, classification or prediction

Document Clustering by k-Means

Example: Term-document matrix can be used to cluster documents according to content using *k*-means

```
kmeans(t(tdm.small), 2)
## K-means clustering with 2 clusters of sizes 15, 5
##
## Cluster means.
    crude oil price
  1 1.0 3.533 2.0
##
## 2 2.2 7.600 7.2
##
## Clustering vector:
   127 144 191 194 211 236 237
                              242 246 248 273 349 352 353
                                                          368 489 502 543
      2 1 1
  704 708
##
# #
## Within cluster sum of squares by cluster:
  [1] 87.73 74.80
##
    (between SS / total SS = 50.9 %)
##
##
## Available components:
##
## [1] "cluster" "centers"
                                                    "withinss"
                                    "totss"
   [5] "tot.withinss" "betweenss"
                                    "size"
```

Outline

2 Text Mining

3 Excursus: Sentiment Analysis

From News to Sentiment

- Methods that use the textual representation of documents to measure the positivity and negativity of the content are referred to as opinion mining or sentiment analysis
- Flow diagram

Sentiment Analysis

- Frequent approach utilizes dictionaries containing words labeled as positive or negative
- Let W_{pos} denote the number of positive words, W_{neg} the negative and W_{tot} the total number of words
- ► So-called Net-Optimism sentiment S_{NO} ∈ [-1,+1] is given by

$$S_{
m NO} = rac{W_{
m pos} - W_{
m neg}}{W_{
m tot}}$$

 Gives normalized ratio between positive and negative terms

Example

During the first nine months of 2008 KRONES remained on course for growth, despite the cyclical downturn. On a like-for-like basis, sales rose by 12.5 % to reach Euro 1,765.9 m. During the period under review, the company benefited from the increasing number of clients looking for all-inclusive jobs. Another growth driver during the year's first three quarters was the group's Plastics Technology Division. KRONES is the world's leading vendor of machines and

- Positive words marked in blue
- Negative words marked in red

$$ightarrow S_{
m NO} = rac{7-1}{68} = 0.088$$

Sentiment Analysis in R

- Read dictionaries with positive/negative words into data frame
- Create corresponding term-document matrices

Sentiment Analysis in R

Calculate Net-Optimism sentiment for each document

```
# Initialize empty vector to store results
sentiment <- numeric(length(reuters))
# Iterate over all documents
for (i in 1:length(reuters)) {
    # Calculate Net-Optimism sentiment
    sentiment[i] <- (sum(tdm.pos[, i]) - sum(tdm.neg[, i]))/sum(tdm[, i])
}
# Output results
sentiment
## [1] -0.045455 0.007273 -0.042553 0.000000 0.000000 -0.011236 0.014815
## [1] -0.045455 0.007273 -0.042553 0.000000 0.000000 -0.012987 -0.028986
## [1] 0.021053 -0.005208 -0.018265 -0.027778 0.000000 -0.012987 -0.028986
## [15] 0.013889 0.000000 0.008547 -0.032258 0.005291 0.024390</pre>
```

 \rightarrow Sentiment scores are input to data analysis (e.g. regression) or prediction (e.g. Support Vector Machine)