Organization & Motivation

Computational Economics Practice Winter Term 2015/16 Stefan Feuerriegel

Outline

- 1 Introduction to Optimization
- 2 Motivation

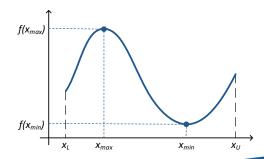
Outline

1 Introduction to Optimization

2 Motivation

Mathematical Optimization

- Optimization uses a rigorous mathematical model to determine the most efficient solution to a described problem
- One must first identify an objective
 - Objective is a quantitative measure of the performance
 - Examples: profit, time, cost, potential energy
 - In general, any quantity (or combination thereof) represented as a single number



Applications of Optimization

- Management
 - Determining product portfolios
 - Location planning
 - Investments decisions
- Game theory
 - Comparing players' strategies
- Logistics
 - Finding optimal routes and schedules
- Design decisions
 - Constructing processes, plants and other equipment
- Operation
 - Adjustment to changes in environmental conditions, production planning, control, etc.
- Mathematical modeling
 - Parameter estimation
 - Model discrimination

Organization & Motivation: Introduction to Optimization

Optimization Problem

Optimization is the minimization or maximization of a function subject to (s. t.) constraints on its variables

Notation: General form

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{s.t.} \quad h(\boldsymbol{x}) = 0$$
$$g(\boldsymbol{x}) \le 0$$

with

- $\mathbf{x} \in \mathbb{R}^n$ as the variable, unknown or parameter
- Objective function $f : D \to \mathbb{R}, D \subseteq \mathbb{R}^n$
- Equality constraints $h: D_h \to \mathbb{R}^l$, $D_h \subseteq \mathbb{R}^n$
- ► Inequality constraints $g: D_g \to \mathbb{R}^k, D_g \subseteq \mathbb{R}^n$

Properties of Optimization Problems

Objective	Linear, quadratic, non-linear, etc.					
Constraints	Equality and inequality					
Variable types	x can be continuous, integer, mixed					
Direction	$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \Leftrightarrow \max_{\boldsymbol{x}} - f(\boldsymbol{x})$					
Bounds	Lower $\mathbf{x}_L \leq \mathbf{x}$ or upper $\mathbf{x} \leq \mathbf{x}_U$					
Dimension	One dimensional if $n = 1$, or multi-dimensional if $n > 1$					
Optima	Isolated, local or global nature					

Classification of Optimization Problems

- Linear Programming (LP)
 - Objective function and constraints are linear
 - $\min_{\boldsymbol{x}} \boldsymbol{c}^T \boldsymbol{x}$ s.t. $A \boldsymbol{x} \leq \boldsymbol{b}, \, \boldsymbol{x} \geq 0$
- Quadratic Programming (QP)
 - Objective function is quadratic and constraints are linear
 - $\min_{\boldsymbol{x}} \boldsymbol{x}^T Q \boldsymbol{x} \text{ s.t. } \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \ \boldsymbol{x} \geq 0$
- Non-Linear Programming (NLP): objective function or at least one constraint is non-linear
- Integer Programming (IP): all variables are discrete
- Mixed Integer Programming (MIP)
 - Continuous and discrete variables
 - Problem can be linear (MILP) or non-linear (MINLP)

Classification of Optimization Problems

- Dynamic Optimization: solution is a function of time
- Stochastic Optimization
 - Model cannot be fully specified, but has uncertainties with confidence estimates
 - Optimize expected performance given uncertainty

Question

What type is the following optimization problem?

$$\max_{x,y} 3x + y^2 \quad \text{s.t.} \quad x + y < 10 \text{ and } y \in \{1, 2, 4, 8\}$$

- MIP
- MILP
- MINLP

Visit http://pingo.upb.de with code 1523

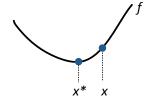
Organization & Motivation: Introduction to Optimization

Optimal Solution

• x^* is a global minimum if $x^* \in D$ and

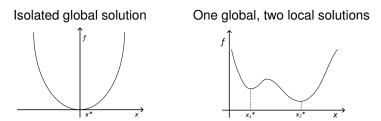
 $f(x^*) \leq f(x)$ for all $x \in D$

 \rightarrow Global minimizers are desired, though often one has only local knowledge of *f*

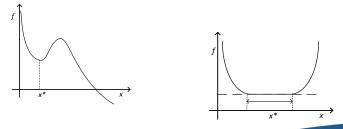


Optimal Solution

Examples of optimal solutions:



A local but no global solution Many non-isolated, global solutions



Organization & Motivation: Introduction to Optimization

Optimization Procedure

Formulation and solution of optimization problems usually follows:

- Analysis of environment to determine the variables of interest
- Definition of optimality criteria as an objective function with (additional) constraints
- 3 Formulation as a mathematical model with degrees of freedom
- 4 Numerical optimization to find a solution
- **5** Verification of the solution through sensitivity analysis (with respect to the assumptions made in the problem formulation)

Outline

1 Introduction to Optimization

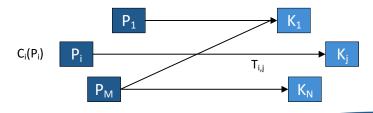
2 Motivation

Production Scheduling

Problem

- Given plants i = 1, ..., M where each manufactures P_i goods
- Each plant has a maximal output O_i
- ► Each plant manufactures at a capacity-specific cost C_i(P_i), which gives the cost as a function of the production
- Each customer j = 1, ..., N requests C_j goods

Objective function: find the optimal production schedule such that the manufacturing and shipment costs are minimized



Portfolio Optimization

Problem

- Investor wants to invest money such that it maximizes the investor's utility
- Utility U depends on daily return μ and risk σ^2
- Given risk taking κ , then $U(\mu, \sigma^2) = \mu \frac{\kappa}{2}\sigma^2$

Objective function: Maximize $U(\mu, \sigma^2)$ among a range of stocks $s_1, \ldots s_N$

\boldsymbol{c}^{T}	<i>s</i> 1	s ₂	s 3	G)	<i>S</i> 1	s ₂	S 3
μ	0.2	0.5	0.1	S	1	0.1	0.02	0.02
				S	2	0.02	0.1	0.02
				S	3	0.02	0.02	0.1

$$\Rightarrow \max_{\boldsymbol{x}} \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} - \frac{\kappa}{2} \boldsymbol{x}^{\mathsf{T}} Q \boldsymbol{x} \quad \text{s.t.} \quad x_i \ge 0 \text{ and } \sum_{i} x_i = 1$$

Portfolio Optimization in R

library(quadprog) # load necessary library

[1] 0.2916667 0.4791667 0.2291667

sol\$value # minimum value of objective function

[1] 0.01729167

Organization & Motivation: Motivation

Outlook

- 1 Introduction to R
- 2 Advanced R
 - Programming prerequisites
 - Visualize optimization routines
- 3 Numerical Analysis:
 - Mathematical prerequisites to derive and formalize optimization routines
- 4 Optimization in R:
 - Use of built-in optimization routines