
Advanced R: Visualization and
Programming

Computational Economics Practice
Winter Term 2015/16

Stefan Feuerriegel

Today’s Lecture

Objectives

1 Visualizing data in R graphically as points, lines, contours or areas

2 Understanding the programming concepts of if-conditions and loops

3 Implementing simple functions in R

4 Measuring execution time

2Advanced R

Outline

1 Visualization

2 Control Flow

3 Timing

4 Wrap-Up

3Advanced R

Outline

1 Visualization

2 Control Flow

3 Timing

4 Wrap-Up

4Advanced R: Visualization

Point Plot

I Creating simple point plots (also named scatter plots) via plot(...)
I Relies upon vectors denoting the x-axis and y-axis locations
I Various options can be added to change appearance

d <- read.csv("persons.csv", header=TRUE, sep=",",
stringsAsFactors=FALSE)

plot(d$height, d$age)

●

●

●
●

●

165 170 175 180 185 190

22
26

30

d$height

d$
ag

e

5Advanced R: Visualization

Adding Title, Labels and Annotations

I Title is added through additional parameter main
I Axis labels are set via xlab and ylab
I Annotations next to points with text(...)

plot(d$height, d$age,
main="Title", # title for the plot
xlab="Height", ylab="Age") # labels for x and y axis

text(d$height, d$age, d$name) # d$name are annotations

●

●

●
●

●

165 170 175 180 185 190

22
26

30

Title

Height

A
ge

Julia
Robin

Kevin
Max

Jerry

6Advanced R: Visualization

Line Plot
Generate line plot using the additional option type="l"

x <- seq(0, 4, 0.01)
plot(x, x*x, type="l")

0 1 2 3 4

0
5

10
15

x

x
*

x

7Advanced R: Visualization

Exercise: Plotting

x <- seq(-1, +1, 0.01)

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

Question

I How would you reproduce the above plot?
I plot(x, kink(x), type="l", main="")
I plot(x, kink(x), type="l", lab="")
I plot(x, abs(x), type="l", ylab="", xlab="")

I Visit http://pingo.upb.de with code 1523

8Advanced R: Visualization

http://pingo.upb.de

3D Plots

I Consider the function f (x ,y) = x3 +3y− y3−3x

f <- function(x, y) x^3+3*y-y^3-3*x

I Create axis ranges for plotting

x <- seq(-5, 5, 0.1)
y <- seq(-5, 5, 0.1)

I Function outer(x,y,f) evaluates f all combinations of x and y

z <- outer(x, y, f)

9Advanced R: Visualization

3D Plots
Function persp(...) plots the plane through x, y and z in 3D

persp(x, y, z)

x

y

z

10Advanced R: Visualization

3D Plots
Turn on ticks on axes via ticktype="detailed"

persp(x, y, z, ticktype="detailed")

x

−4 −2 0 2 4

y

−4

−2

0

2
4

z

−200

−100

0

100

200

11Advanced R: Visualization

3D Plots

Parameters theta (left/right) and phi (up/down) control viewing angle

persp(x, y, z, theta=20, phi=0)

x

y

z

persp(x, y, z, theta=20, phi=35)

x

y

z

12Advanced R: Visualization

Contour Plots

I A contour line is a curve along which the function has the same value
I image(...) plots a grid of pixels colored corresponding to z-value
I contour(..., add=TRUE) adds contour lines to an existing plot

image(x, y, z) # Plot colors
contour(x, y, z, add=TRUE) # Add contour lines

−4 −2 0 2 4

−
4

−
2

0
2

4

x

y

 −150 −100

 −50

 0
 0 0

 0

 0

 0

 50

 100 150

13Advanced R: Visualization

Contour Plots

f <- function(x, y) sqrt(x^2+y^2)
z <- outer(x, y, f)
image(x, y, z, asp=1) # set aspect ratio, i.e. same scale for x and y
contour(x, y, z, add=TRUE)

Question

I What would the above plot look like?
Answer A Answer B Answer C

−6 −2 2 6

−
4

0
4

x

y

 2

 4

 6 6

 8
 8

 10 1
0

 1
2

 12

 14 1
4

 1
6

 16

−6 −2 2 6

−
4

0
4

x

y

 1

 2

 3

 4

 5
 6

 6

 6

 6

−6 −2 2 6

−
4

0
4

x

y

 −
0.8

 −
0.6

 −
0.4

 −
0.2

 0
 0.2

 0.4
 0.6

 0.8

I Visit http://pingo.upb.de with code 1523

14Advanced R: Visualization

http://pingo.upb.de

Plotting Regression Plane

library(car) # for dataset Highway1

Warning: no function found corresponding to methods exports from ’SparseM’ for:
’coerce’

model <- lm(rate ~ len + slim, data=Highway1)
model

##
Call:
lm(formula = rate ~ len + slim, data = Highway1)
##
Coefficients:
(Intercept) len slim
16.61050 -0.09151 -0.20906

x1r <- range(Highway1$len)
x1seq <- seq(x1r[1], x1r[2], length=30)
x2r <- range(Highway1$slim)
x2seq <- seq(x2r[1],x2r[2], length=30)
z <- outer(x1seq, x2seq,

function(a,b) predict(model,
newdata=data.frame(len=a,slim=b)))

15Advanced R: Visualization

Plotting a Regression Plane

res <- persp(x=x1seq, y=x2seq, z=z,
theta=50, phi=-10)

dp <- trans3d(Highway1$len, Highway1$slim,
Highway1$rate, pmat=res)

points(dp, pch=20, col="red")

x1seq x2seq

z

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

16Advanced R: Visualization

Outline

1 Visualization

2 Control Flow

3 Timing

4 Wrap-Up

17Advanced R: Control Flow

Managing Code Execution

I Control flow specifies order in which statements are executed

I Previous concepts can only execute R code in a linear fashion

I Control flow constructs can choose which execution path to follow

Functions: Combines sequence of statements into a self-contained task

Conditional expressions: Different computations according to a specific
condition

Loops: Sequence of statements which may be executed more than
once

18Advanced R: Control Flow

Functions

I Functions avoid repeating the same code more than once

I Leave the current evaluation context to execute pre-defined commands

Main Program
Function

19Advanced R: Control Flow

Functions

I Extend set of built-in functions with opportunity for customization
I Functions can consist of the following:

1 Name to refer to (avoid existing function names in R)
2 Function body is a sequence of statements
3 Arguments define additional parameters passed to the function body
4 Return value which can be used after executing the function

I Simple example

f <- function(x,y) {
return(2*x + y^2)

}
f(-3, 5)

[1] 19

20Advanced R: Control Flow

Functions

I General syntax

functionname <- function(argument1, argument2, ...) {
function_body
return(value)

}

I Return value is the last evaluated expression
→ Alternative: set explicitly with return(...)

I Curly brackets can be omitted if the function contains only one
statement (not recommended)

I Be cautious since the order of the arguments matters

I Values in functions are not printed in console
→ Remedy is print(...)

21Advanced R: Control Flow

Examples of Functions

square <- function(x) x*x # last value is return value
square(10)

[1] 100

cubic <- function(x) {
Print value to screen from inside the function
print(c("Value: ", x, " Cubic: ", x*x*x))
no return value

}
cubic(10)

[1] "Value: " "10" " Cubic: " "1000"

22Advanced R: Control Flow

Examples of Functions

hello <- function() { # no arguments
print("world")

}
hello()

[1] "world"

my.mean <- function(x) {
return (sum(x)/length(x))

}
my.mean(1:100)

[1] 50.5

23Advanced R: Control Flow

Scope in Functions

I Variables created inside a function only exists within it→ local

I They are thus inaccessible from outside of the function
I Scope denotes when the name binding of variable is valid

x <- "A"
g <- function(x) {
x <- "B"
return(x)

}
x <- "C"

I What are the values?

g(x) # Return value of function x
x # Value of x after function execution

I Solution

[1] "B"
[1] "C"

24Advanced R: Control Flow

Scope in Functions

I Variables created inside a function only exists within it→ local

I They are thus inaccessible from outside of the function
I Scope denotes when the name binding of variable is valid

x <- "A"
g <- function(x) {
x <- "B"
return(x)

}
x <- "C"

I What are the values?

g(x) # Return value of function x
x # Value of x after function execution

I Solution

[1] "B"
[1] "C"

24Advanced R: Control Flow

Unevaluated Expressions

I Expressions can store symbolic mathematical statements for later
modifications (e. g. symbolic derivatives)

I Let’s define an example via expression(...)

f <- expression(x^3+3*y-y^3-3*x)
f

expression(x^3 + 3 * y - y^3 - 3 * x)

I If evaluation of certain parameters becomes necessary, one can use
eval(...)

x <- 2
y <- 3
eval(f)

[1] -16

25Advanced R: Control Flow

If-Else Conditions

I Conditional execution requires a condition to be met

Block 1 Block 2

Condition
FalseTrue

26Advanced R: Control Flow

If-Else Conditions

I Keyword if with optional else clause

I General syntax:

if condition

if (condition) {
statement1

}

If condition is true,
then statement is
executed

if-else condition

if (condition) {
statement1

} else {
statement2

}

If condition is true, then
statement1 is executed,
otherwise statement2

27Advanced R: Control Flow

If-Else Conditions

I Example

grade <- 2
if (grade <= 4) {
print("Passed")

} else {
print("Failed")

}

[1] "Passed"

grade <- 5
if (grade <= 4) {
print("Passed")

} else {
print("Failed")

}

[1] "Failed"

I Condition must be of length 1 and evaluate as either TRUE or FALSE

if (c(TRUE, FALSE)) { # don't do this!
print("something")

}

Warning in if (c(TRUE, FALSE)) {: Bedingung hat Länge
> 1 und nur das erste Element wird benutzt

[1] "something"

28Advanced R: Control Flow

Else-If Clauses

I Multiple conditions can be checked with else if clauses

I The last else clause applies when no other conditions are fulfilled

I The same behavior can also be achieved with nested if-clauses

else-if clause
if (grade == 1) {
print("very good")

} else if (grade == 2) {
print("good")

} else {
print("not a good grade")

}

Nested if-condition
if (grade == 1) {
print("very good")

} else {
if (grade == 2) {
print("good")

} else {
print("not a good grade")

}
}

29Advanced R: Control Flow

If-Else Function

I As an alternative, one can also reach the same control flow via the
function ifelse(...)

ifelse(condition, statement1, statement2)
executes statement1 if condition is true,
otherwise statement2

grade <- 2
ifelse(grade <= 4, "Passed", "Failed")

[1] "Passed"

I ifelse(...) can also work with vectors as if it was applied to each
element separately

grades <- c(1, 2, 3, 4, 5)
ifelse(grades <= 4, "Passed", "Failed")

[1] "Passed" "Passed" "Passed" "Passed" "Failed"

I This allows for the efficient comparison of vectors

30Advanced R: Control Flow

For Loop

I for loops execute statements for a fixed number of repetitions

Conditional Code

Condition

If condition
is false

If condition
is true

31Advanced R: Control Flow

For Loop

I General syntax

for (counter in looping_vector){
code to be executed for each element in the sequence

}

I In every iteration of the loop, one value in the looping vector is
assigned to the counter variable that can be used in the statements
of the body of the loop.

I Examples

for (i in 4:7) {
print(i)

}

[1] 4
[1] 5
[1] 6
[1] 7

a <- c()
for (i in 1:3){
a[i] <- sqrt(i)

}
a

[1] 1.000000 1.414214 1.732051

32Advanced R: Control Flow

While Loop

I Loop where the number of iterations is controlled by a condition
I The condition is checked in every iteration
I When the condition is met, the loop body in curly brackets is executed
I General syntax

while (condition) {
code to be executed

}

I Examples

z <- 1
same behavior as for loop
while (z <= 4) {

print(z)
z <- z + 1

}

[1] 1
[1] 2
[1] 3
[1] 4

z <- 1
iterates all odd numbers
while (z <= 5) {

z <- z + 2
print(z)

}

[1] 3
[1] 5
[1] 7

33Advanced R: Control Flow

Outline

1 Visualization

2 Control Flow

3 Timing

4 Wrap-Up

34Advanced R: Timing

Measuring Timings via Stopwatch

I Efficiency is a major issue with larger datasets and complex codes

I Timings can help in understanding scalability and bottlenecks

I Use a stopwatch approach measuring the duration between two
proc.time() calls

start.time <- proc.time() # Start the clock

g <- rnorm(100000)
h <- rep(NA, 100000)
for (i in 1:100000) { # Loop over vector, always add +1
h[i] <- g[i] + 1

}

Stop clock and measure duration
duration <- proc.time() - start.time

35Advanced R: Timing

Measuring Timings via Stopwatch

I Results of duration have the following format

user system elapsed
0.71 0.02 0.72

I Timings are generally grouped into 3 categories
I User time measures the understanding of the R instructions
I System time measures the underlying execution time
I Elapsed is the difference since starting the stopwatch (= user +

system)
I Alternative approach avoiding loop

start.time <- proc.time() # Start clock
g <- rnorm(100000)
h <- g + 1
proc.time() - start.time # Stop clock

user system elapsed
0.08 0.00 0.08

I Rule: vector operations are faster than loops
36Advanced R: Timing

Measuring Timings of Function Calls
Function system.time(...) can directly time function calls

slowloop <- function(v){
for (i in v) {
tmp <- sqrt(i)

}
}

system.time(slowloop(1:1000000))

user system elapsed
2.06 0.05 2.13

37Advanced R: Timing

Outline

1 Visualization

2 Control Flow

3 Timing

4 Wrap-Up

38Advanced R: Wrap-Up

Fancy Diagrams with ggplot2

library(ggplot2)

df <- data.frame(Plant=c("Plant1", "Plant1", "Plant1", "Plant2", "Plant2", "Plant2"),
Type=c(1, 2, 3, 1, 2, 3),
Axis1=c(0.2, -0.4, 0.8, -0.2, -0.7, 0.1),
Axis2=c(0.5, 0.3, -0.1, -0.3, -0.1, -0.8))

ggplot(df, aes(x=Axis1, y=Axis2, shape=Plant,
color=Type)) + geom_point(size=5)

●

●

●

−0.5

0.0

0.5

−0.4 0.0 0.4 0.8
Axis1

A
xi

s2

1.0

1.5

2.0

2.5

3.0
Type

Plant

● Plant1

Plant2

39Advanced R: Wrap-Up

Summary: Visualization and Timing

plot() Simple plot function

text() Add text to an existing plot

outer() Apply a function to two arrays

persp() Plot a surface in 3D

image() Plot a colored image

contour() Add contour lines to a plot

trans3d() Add point to an existing 3D plot

points() Add points to a plot

proc.time() Stopwatch for measuring execution time

system.time(expr) Measures execution time of an expression

40Advanced R: Wrap-Up

Summary: Programming

function(){} Self-defined function

expression() Function with arguments not evaluated

eval() Evaluate an expression

if, else Conditional statement

for(){} Loops over a fixed vector

while Loops while a condition is fulfilled

41Advanced R: Wrap-Up

Outlook

Additional Material

I Further exercises as homework
I Advanced materials beyond our scope

I Advanced R (CRC Press, 2014, by Wickham)
http://adv-r.had.co.nz/

Future Exercises

R will be used to implement optimization algorithms

42Advanced R: Wrap-Up

http://adv-r.had.co.nz/

	Visualization
	Control Flow
	Timing
	Wrap-Up

