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Today’s Lecture

Obijectives

Understanding how computers store and handle numbers

Repeating basic operations in linear algebra and their use in R
Recapitulating the concept of derivatives and the Taylor approximation
Formulating necessary and sufficient conditions for optimality
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Number Representations



Positional Notation

» Method of representing numbers
» Same symbol for different orders of magnitude (% Roman numerals)
» Formatis dndp_1...0bds =0p-b" ' +dyp_1-b" 2 +...+0b-b+d,
with
b base of the number
n number of digits
d digit in the i-th position of the number
» Example: 752 is 75102 + 55 - 10 4 2;



Base Conversions
» Numbers can be converted between bases

» Base 10 is default
» Binary system with base 2 common for computers

» Example: 752 in base 10 equals 1011110000 in base 2
» Conversion from base b into base 10 via
dp-b" ' dp1 b2+ 4 db-b+d
» Example: 101101011 in base 2
1.2840.2"4+1.2541.2°40.2* +1.2840.22 +1.2" +1

1-256+0-128+1-64+1-324+0-16+1-8+0-4+1-2+1
=363 in base 10



Base Conversions

» Convert the number 10011 010 from base 2 into base 10

> 262
> 138
> 154

» Visithttp://pingo.upb.de with code 1523



http://pingo.upb.de
http://pingo.upb.de

Base Conversions

» Convert the number 10011 010 from base 2 into base 10

> 262
> 138
> 154

» Visithttp://pingo.upb.de with code 1523

» Convert the number 723 from base 10 into base 2

> 111010011
> 10011010011
> 1011010011

» Visithttp://pingo.upb.de with code 1523
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Base Conversions
» Conversion scheme of number s; from base 10 into base b:

Start Integer part of division Remainder

S sp:=[%] r:=s; modb

So s3:=|%| =S, modb
|

Sm 2| =0 Im:=Sm mod b

» Theresultisrirn...ry



Base Conversions

Example: convert 363 from base 10 into base 2

» Calculation steps:

Start Integer division by 2 Remainder

363 181 1
181 90 1
90 45 0
45 22 1
22 11 0
11 5 1
5 2 1

2 1 0

1 0 1

» Result: 101101011 in base 2



Base Conversions in R

» Load necessary library sfsmisc
library (sfsmisc)

» Call function digitsBase (s, base=Db) to convert s into base b

# convert the number 450 from base ] into base
the 1 UM A om L 5 I c

digitsBase (450, base=8)

## Class 'basedInt' (base = 8) [1:1]

## [,1]
## [1,] 7
## (2,1 0
## [3,] 2

» Call strtoi (d, base=b) to convert d from base b into base 10

ve @ vlUlL rrom base

strtoi (10101, base=2)

## [1] 21



Floating-Point Representation
» Floating point is the representation to approximate real numbers in
computing

(—1)%9" . significand - base®P°en

v

Significand and exponent have a fixed number of digits

v

More digits for the significand (or mantissa) increase accuracy
» The exponent controls the range of numbers

» Examples
256.78 — +2.5678-102
—256.78 — —2.5678-102
0.00365 —  +3.65-1073
» Very large and very small numbers are often written in scientific

notation (also named E notation)
—e.g. 2.2e6 =2.2-10° = 2200000, 3.4e—2 = 0.034



Limited Precision of Floating-Point Numbers

» The limited precision of a computer leads false results
x <= 10730 + 10" (-20)

x — 10730
## [1]1 O
sin(pi) == 0

## [1] FALSE
3 -2.9==20.1

## [1] FALSE



Limited Precision of Floating-Point Numbers

» Workaround is to use round (x) but this cuts all non-integer digits
round (sin (pi))
## [11 O

» A better method is to use a tolerance for the comparison

a <- 3 -2.9

b <- 0.1

tol <- le-10
abs(a - b) <= tol

## [1] TRUE

» Numbers that are too large can cause an overflow
2%10%900
## [1] Inf



Outline

Linear Algebra
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Dot Product

» The dot product (or scalar product) takes two equal-size vectors and
returns a scalar, as defined by

n
a-b:::aTb:: z:eybi::a1b14—a2b2+—”.%—anbn

i=1

with a = [ay,az,...,a,) € R"and b= [by,bs,...,b,)]" € R”
» Usage in R via the operator %*%

A <- e¢(1, 2, 3)
B <- c(4, 5, 6)
A %*x% B

## [,1]

## [1,] 32

drop (A %*% B)

## [1] 32

Hmereal ey e ot 4‘



Properties of the Dot Product

» Cummutative
a-b=>b-a
» Distributive over vector addition
a-(b+c)=a-b+a-c
» Bilinear
a-(rb+c)=r(a-b)+a-b withreR
» Scalar multiplication
(na)-(rb)=rr.(a-b) withr,ncR

» Two non-zero vector a and b are orthogonal if and only if a- b =10

Hmereal ey e ot 4‘



(Vector) Norm

» The norm is a real number which gives us information about the
“length” or “magnitude” of a vector

» Itis defined as ||-|| — R=° such that
x| >0if x#][0,...,0]” and ||x|| = 0 if and only if x = [0,...,0]"
[lrx|| = ||l ||| for any scalar r € R
x+yll < [[x[[+]yl

» This definition is highly abstract, many variants exist

» The so-called inner product (a, b) is a generalization to abstract vector
spaces over a field of scalars (e.g. C)

Hmereal ey e ot 4



Common Variants of Vector Norms

» The absolute-value norm equals the absolute value, i. e.
x|l =|x|] forxeR

» The Euclidean norm (or L?-norm) is the intuitive notion of length

x|, = VX x=1/x2+...x2

» The Manhattan norm (or L'-norm) is the distance on a rectangular grid

n
Ix[ly = Y Ixi
i=1

» Their generalization is the p-norm

i=1

n 1/p
Ixll, = (zwp) for p > 1

Numerical Analysis: Linear Algebra



L'-vs. L2-Norm

LR D - - Blue — Euclidean distance
Black — Manhattan distance

Question

» What is the distance d = bottom left — top right in L'- and L2-norm?
> |dlly =8, ||d|, =16
> |ld|ly =8, ||d]l, = v32
> |ldlly =v32 |dll, =8

» Visithttp://pingo.upb.de with code 1523

Humereal ey e ot 4‘
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Vector Norms in R
» No default built-in function, instead calculate the L'- and L?-norm
manually

x <- ¢c(1, 2, 3)

sum(abs(x)) # LIl1-norm
## [1]1 6
sgrt (sum(x"2)) # LZ2-norm
## [1] 3.741657
» The p-norm needs to be computed as follows
(sum (abs (x) ~3) )~ (1/3) # 3-norm

## [1]1 3.301927

Hmereal ey e ot ‘



Scalar Multiplication

AXq Aayy - Aaim
» Definition: Ax=xA = | : AA=AL =
AXn Aapr - apm
» Use the default multiplication operator
5«c (1, 2, 3)
## (11 5 10 15

m <- matrix(c (1,2, 3,4, 5,6), ncol=3)

m

#i (11 [,2]1 [,3]
## [1,] 1 3 5
## [2,] 2 4 6
S5*xm

## (11 [,21 [,3]
## [1,] 5 15 25
## [2,] 10 20 30
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Transpose

» The transpose of a matrix A is another matrix A’ where the values in
columns and rows are flipped

T.
A" = [ajly
-
|1 3 5 e
» Example: > 4 8 — |3 4
5 6

» Transpose via t (A)

m

## (11 [,2] [,3]
## [1,] 1 3

## [2,] 2 4 6
t (m)

## [,1]

## [1,] 1

## [2,] 3

## [3,] 5

Numerical Analysis: Linear Algebra




Matrix-by-Vector Multiplication

» Definition:
aiy a2 ... am Xq a1 xy +aexe+ -+ aimxXn
a a2 ... am X2 a21X1 + @goXo + -+ a2mXn
Ax = =
ant am2 ... amm Xn anm X1 + an2Xo + -+ + @nmXn

with A€ R™™ x € R" and Ax € R”
» Use operator %*% in R

Hmereal ey e ot ‘



Element-Wise Matrix Multiplication

» For matrices A€ R™™ and B € R™™ it returns a matrix C € R™™ of
defined as

Cj = a,-,-b,-j

» The default multiplication operator = performs an element-wise
multiplication

m

## (.11 [,2]1 [,3]
## [1,] 1 3 5
## [2,] 2 4 6
m#m

## (11 [,2]1 [,3]
## [1,] 1 9 25
## [2,] 4 16 36
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Matrix-by-Matrix Multiplication

» Given matrices A € R"™™ and B € R™/, then the matrix multiplication
obtains C = AB € R™*/, defined by

m
Cj = Z a/kbk,-
k=1

» |t is implemented by the operator %*%

t (m)
#4# (11 [,21 [,3] ## [,11 [,2]
## [1,] 8 5 ## (1,1 1 2
## [2,] 2 4 6 ## [2,] 3 4
## (3,1 5 6

## (11 [,2]
## [1,] 35 44
##+ [2,] 44 56

Numerical Analysis: Linear Algebra




ldentity Matrix
» The identity matrix
I, =diag(1,1,...,1) e R™"

is a square matrix with 1s on the diagonal and Os elsewhere
» It fulfills

hWA=AlL=A

given a matrix A € R™™
» The command diag (n) creates an identity matrix of size nx n
diag(3)

## [,1]
## [1,] 1
#H [2,] 0
## [3,] 0

Hmereal ey e ot ‘



Matrix Inverse
» The inverse of a square matrix A is a matrix A~' such that
AAT = (note that generally this is # A"A)

» A square matrix has an inverse if and only if its determinant det A # 0

» The direct calculation is numerically highly unstable, and thus one
often rewrites the problem to solve a system of linear equations

Hmereal ey e ot ‘



Matrix Inverse in R

» solve () calculates the inverse A~" of a square matrix A

sg.m <- matrix(c(1l,2,

sg.m
## [,11 [,2]
## [1,] 1

## [2,] 2 4

## [,11 [,2]
## [1,] -2 1.5
## [2,] 1 -0.5
sg.m %$x% solve(sg.m)
## [,1]1 [,2]
#4# [1,] 0 0
## [2,] 0 0

Hmereal ey e ot ‘
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- diag(2) # post check



Pseudoinverse

» The pseudoinverse AT € R™<"is a generalization of the inverse of a
matrix A € R™; fulfilling among others

AAT =

» ginv (A) inside the library MASS calculates the pseudoinverse

library (MASS)

ginv (m)

#4 [,1] [,2]
## [1,] -1.3333333 1.0833333
## [2,] -0.3333333 0.3333333
## [3,] 0.6666667 —-0.4166667
m %$x% ginv(m)

#4 [,11 [,2]

## [1,] 1.000000e+00 0

## [2,] 2.664535e-15 1

» If AAT is invertible, it is given by

+ __AT

Numerical Analysis: Linear Algebra
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Determinant

» The determinant det A is a useful value for a square matrix A, relating
to e. g. the region it spans

» A square matrix is also invertible if and only if det A 0
Calculation

» The determinant of of a 2 x 2 matrix A is defined by

a2
az  a

detA= = ay1dg2 — @12a21

» A similar simple rule exists for matrices of size 3 x 3, for all others one
usually utilizes the Leibniz or the Laplace formula

» Calculation in Ris via det (A)

det (sg.m)

## [1]1 -2
Hmereal ey e ot ‘



Eigenvalues and Eigenvectors

» An eigenvector v of a square matrix A is a vector that does not change
its direction under the linear transformation by A € R™"

» This is given by
Av=Av  forv#]0,...0]" €R”

where A € R is the eigenvalue associated with the eigenvector v

2 0 1
» Example: the matrix A= [0 2 0] has the following eigenvectors
1 0 2
and eigenvalues
1 0 1
)L1:1,V1: 0 s AQZZ,VQ: 1 s 7(/3:3,V3: 0
—1 0 1

Hmereal ey e ot ‘



Eigenvalues and Eigenvectors

Geometric interpretation
Matrix A stretches the vector v
but does not change its direction

— v is an eigenvector of A
Ay

Av =Av

Humereal ey e ot ‘



Eigenvalues and Eigenvectors

» Given A=

N = —
w N O
w O o

» Which of the following is not an eigenvector/eigenvalue pair?

[ 2

3
> A=1, v = —%]
> 2/2:2,V2:

> %:S’VSI

> Visithttp://pingo.upb.de with code 1523

Humereal ey e ot ‘
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Eigenvalues and Eigenvectors in R

» Eigenvalues and eigenvectors of a square matrix Avia eigen (A)

sg.m
## [,11 [,2]
## (1,1 1

#H (2,1 2 4

e <- eigen(sg.m)
eSval eigenvalues

## [1] 5.3722813 -0.3722813
e$vec # eigenvectors

## [,1] [,2]
## [1,] -0.5657675 -0.9093767
## [2,] -0.8245648 0.4159736
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Definiteness of Matrices

» The definiteness of a matrix helps in determining the nature of optima
» Definitions
» The symmetric matrix A € R™" is positive definite if

x"Ax >0 forall x#]0,...,0]"
» The symmetric matrix A € R™" is positive semi-definite if
T T
x'Ax>0 forallx#][0,...,0]

Example

1
The identity matrix b = [O ﬂ is positive definite, since

xThx = [z2) [g ﬂ E‘] =224 72> 0forallz#[0,0]"
2

Hmereal ey e ot ‘



Positive Definiteness

» Tests for positive definiteness
» Evaluating x" Ax for all x is impractical
» All eigenvalues A; of A are positive
» Check if all upper-left sub-matrices have positive determinants
(Sylvester’s criterion)

Hmereal ey e ot ‘



Definiteness Tests in R

The library mat rixcalc offers methods to test all variants of definiteness

library (matrixcalc)

I <- diag(3) C <- matrix(c¢(-2,1,0, 1,-2,1, 0,1,-2),
I nrow=3, byrow=TRUE)
C
## [pl] [,2]1 [[;3]
## [1,] 1 0 0 ## [,11 [,21 [,3]
## [2,] 0 1 0 ## [1,] -2 1 0
## (3,1 0 0 1 ## (2,1 1 =2 1
##+ [3,] 0 1 =2

is.negative.definite (I)

is.positive.semi.definite (C)
## [1] FALSE

## [1] FALSE
is.positive.definite (I)

is.negative.semi.definite (C)
## [1] TRUE

## [1] TRUE

Hmereal ey e ot ‘
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Differentiability

Definition
Let f: D C R" — R be a function and x, € D
» fis differentiable at the point xq if the following limit exists

o) — % (o) = i (o +sg — f(x)

the limit f'(xo) is called the derivative of f at the point xo
» Ifitis differentiable for all x € D, then f is differentiable with derivative f’

Remarks
» Similarly, the 2nd derivative f’ and, by induction, the n-th derivative (")
» Geometrically, f'(xo) is the slope of the tangent to f(x) at xo

A Ay berenaen ‘



Differentiability

Examples
f f | f |
| -
| i
|
b i D ’J: D
X xl,, X );,, X
continuous continuous discontinuous
differentiable not differentiable not differentiable
Question

> What is correct for the function f(x) = 212
» Continuous and differentiable
» Continuous but not differentiable

» Discontinuous and not differentiable
» Visithttp://pingo.upb.de with code 1523

Numerical Analysis: Differentiation
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Chain Rule
Let v(x) be a differentiable function, then the chain rule gives
du(v(x)) _du _dudv
dx  dx dvdt
Example Given u(v(x)) = sinmvx, then

du(v(x)) dsinmvd(mvx)
dx dx  dx

Queston

» What is the derivative of log4 — x?

» 1

—4

= cos(mvx)mv

NIFSS

>

> 1

4—x

» Visithttp://pingo.upb.de with code 1523 n
Numerical Analysis: Differentiation
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Partial Derivative

» The partial derivative with respect to x; is given by

of f(X1,....x+€, ....xn)—F(X1,...,Xj,..., X
7(X) = I|m ( 1 bl I+ n) ( 1 1 n)
oX; €0 €

» fis called partially differentiable, if f is differentiable at each point with
respect to all variables

» Partial derivatives can be exchanged in their order

o (ary_a (o
axi \dx;)  dx \dx;

A Ay berenaen ‘



Derivatives in R

» The function D (£, "x") derives an expression f symbolically

f <- expression (x5 + 2xy”"3 + sin(x) - exp(y))

D(f, "x")
## 5 * x4 + cos(x)
D(D (£, "y"),"y")
# 2 x (3 x (2 x y)) - exp(y)
D(D(f, "x"),"y")
## [1]1 O
» To compute the derivative at a specific point, we use eval (expr)
eval (D(f, "x"), list(x=2, y=1))

## [1] 79.58385

A Ay berenaen ‘



Finite Differences

» Numerical methods to approximate derivatives numerically
» Use a step size h, usually of order 10°

4

» Forward differences

f h)—f
) = (R = 1)
h
» Backward differences

f(x)—h : :
h X

f(x) =
» Centered differences

f(x+h)—f(x—h)
2h

A Anyes bferenaen ‘
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Higher-Order Differences

Use the previous formulae to derive 2nd order central differences

f//(X) %f/(X-l-h) — f/(X)

Q

f(x+h) —2f(x)+f(x—h)
h2

A Ay berenaen ‘



Finite Differences in R

» Given f(x) = sinx
» Seth <- 10e-6
» How to calculate the derivative at x = 2 with centered differences in R?

» (sin(2+h) - sin(2-h)) / (2xh)
» (sin(2+h) - sin(2-h)) / 2xh
» (sin(2+h) - sin(2)) / (2*h)

» Visithttp://pingo.upb.de with code 1523

A Ay berenaen ‘
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Gradient and Hessian Matrix

» Gradientof f: R" — R"

[ of
—(x
9%, %)
Vi(x) = :
of
X
_axn( )_
» The second derivatives of f are called the Hessian (matrix)
9%t 9%f
Txf(x) 8x18x,,(x)
H(x) = V?f(x) = : :
92 92
ax,,afx1 (x) - 3732:(")
» Since the order of derivatives can be exchanged, the Hessian H(x is
T

symmetric, i.e. H(x) = (H(x))



Hessian Matrix in R

» optimHess (x, f, ...) approximatesthe Hessian matrix of f

f <- function (x) (x[1]"3*x[2]"2-x[2]"2+x[1])
optimHess (c(3,2), £, control=(ndeps=0.0001))

## (11 [,2]
#4# [1,] 72 108
## [2,] 108 52

» Above example: forward differences to approximate the Hessian Matrix
of f(x1,X2) at a given point (x4, x2) = (3,2) with a given step size
h = 0.0001

A Ay berenaen ‘
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Taylor Series

» Taylor series approximates f around a point xg as a power series

f'(x0)

10 = 100)+ "0 (1) + P08 (2
+$(x X0)2 ...
(n
= Z f x—xo)”.

» f must be infinitely differentiable
» If xop = 0 the series is also called Maclaurin series
» To obtain an approximation of f, cut off after order n



Taylor Approximation

Approximation of order n (blue) around xo = 0 for f(x) = sinx (in gray)

n=1

10
|

f(x)
0
|

-10

(K< > > (=] +]



Taylor Approximation

Approximation of order n (blue) around xo = 0 for f(x) = e* (in gray)

n=1

10 15 20
|

f(x)

5
|

|

(K< > > (=] +]



Taylor Approximation
Approximation of order n (blue) around xo = 0 for f(x) =logx + 1 (in gray)

n=1
P
- 4
o 4
= T
o~
|
o |
|
¥ 4
T T T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0 1.5

X

(K< > > (=] +]



Taylor Series

1
» What is the Taylor series for f(x) = — with xp = 0?

» f(x)=1+1+x+x2+x3+. .
> f(xX)=1+x+x2+x3+...
» f(X)=x+x2+ x5+

» Visithttp://pingo.upb.de with code 1523
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Taylor Series

1
» What is the Taylor series for f(x) = — with xp = 0?

» f(x)=1+1+x+x2+x3+. .
> f(xX)=1+x+x2+x3+...
» f(X)=x+x2+ x5+

» Visithttp://pingo.upb.de with code 1523

» What is the Taylor series for f(x) = X with xo =0
x | X2 X
S () =1+ 54242
> f(x)_1+1,+2,+3,—|—..

> Visit http //pingo.upb.de with code 1523
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Taylor Approximation with R

» Load library pracma
library (pracma)
» Calculate approximation up to degree 4 with taylor (£, x0, n)

f <- function (x) cos(x)
taylor.poly <- taylor(f, x0=0, n=4)
taylor.poly

#4# [1] 0.04166733 0.00000000 -0.50000000 0.00000000 1.00000000
» Evaluate Taylor approximation p at x with polyval (p, x)

polyval (taylor.poly, 0.1) # x = 0.1

#4# [1] 0.9950042

cos(0.1) # for comparison

#4# [1] 0.9950042

polyval (taylor.poly, 0.5) - cos(0.5)

## [1] 2.164622e-05



Taylor Approximation in R

Visualizing Taylor approximation

x <- seq(-7.0, 7.0, by=0.01)

yv.f < £(x)

y.taylor <- polyval (taylor.poly, x)

plot (x, y.f, type="1", col="gray", lwd=2, ylim=c(-1, +1))
lines (x, y.taylor, col="darkblue")

grid()
S
i
v ]
[S]
- O
P
0
S 4
T
<
o

X
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Extreme Value Theorem

Theorem
» Given: real-valued function f
» f continuous in the closed and bounded interval [x., xy]

v

Then f must attain a maximum and minimum at least once

v

. e. there exists Xmax, Xmin € [XL, Xu] such that

f(Xmax) > f(x) > f(Xmin) for all x € [x., xu]

f¥Xmax)

f(Xmin)




Optimum
Definitions

» x*is alocal minimum if x* € D and if there is a neighborhood N(x*),
such that

f(x*) <f(x) forallxe N(x*)C D

» x* is a strict local minimum if x* € D and if there is a neighborhood
N(x*), such that

f(x*) <f(x) forallxe N(x*)C D
» x*is a global minimum if x* € D and

f(x*)<f(x) forallxeD

— What conditions need to be fulfilled for a minimum?



Optimality Condition
Conditions for a minimum x*

1st order condition  f'(x*) =0 — necessary
2nd order condition  f’(x*) >0 — sufficient

Interpretation through Taylor series
f(x+h) = f(x)+ ' (x)h+ 0O (H)
Then

f(x+h)—f(x)>0 , B
f(x—h)—f(x)>0} = ) =0

x-h x X:I-h

f(x+h)—f(x) = 1f”(x)h2 +0(h) >0
f = f"(x)>0
f(x—h)—f(x) = 5f“(x)h2 +0(h%) >0



Optimality Condition

Theorem (sufficient optimality condition)
Let f be twice continuously differentiable and let x* € R", if

First order condition
* T
Vf(x*)=]o,...,0]
Second order condition
V2f(x*) is positive definite

then x* is a strict local minimizer



Optimality Conditions

The previous theory does not cover all cases
» Imagine f(x) = |x|

o _
o
~~ pa—
X n |
8 4
(U —
o ]
o

» f(x) has a global minimum at x* =0
» Since f is not differentiable, the optimality conditions do not apply



Stationarity
Definition
» Let f be continuously differentiable. A point x* € R" is stationary if
Vf(x*)=0

» x* is called a saddle point if it is neither a local minimum or maximum

Examples

» f(x) = —x2 has only one stationary
x* =0, since Vf(x*) = —2x* =0
» f(x) = x® has a saddle point at x* = 0

» f(x1,X%) = x2 — x5 has a saddle point
x*=[0,0]"




Stationary Points

Nature of x* Definiteness of H x"Hx A lllustration
Minimum positive definite >0 >0 %
Valley positive semi-definite >0 >0 /y

(\
Saddle point  indefinite 40 #0 %ij%:
Ridge negative semi-definite <0 <0 %
Maximum negative definite <0 <0 AN



Convexity

Definitions
» A domain D C R"is convex if

Vxi,x € DV €[0,1] oaxi+(1—a)xx €D
» A function f : D — R is convex if

Vxi,x2 € DV € [0,1] f(oxs+(1—a)xe) < axg+ (1 —o)x

convex non-convex / concave

Numerical Analysis: Optimality Conditions




Global Optimum

» Convexity gives information about the curvature, thus stationary points
» Constraints of an optimization define the feasible set

D= {x e Dl g(x) <0,h(x) =0}

which can be either convex or concave

» Global minima are usually difficult to find numerically, except for cases
of convex optimization

Definition
An optimization problem is convex if both the objective function f and its
feasible set are convex

Theorem
The solution of a convex optimization is also its global solution



Outline

B Wrap-Up
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Summary: Linear Algebra

Dot product a-b=a'b

Norm x|

Transpose AT = [g];

Identity matrix I, =diag(1,...,1) € R™"
Inverse A" € R™" such that AA~" = |
Pseudoinverse AT € R™ " such that AAT = |
Determinant detA

Eigenvalue, -vector Av = Av for v #0

Positive definite xTAx >0forx#0

A Ay Hete ‘



Summary: Numerical Analysis

Partial derivative
Finite differences
Gradient
Hessian

Taylor series

Numerical Analysis: Wrap-Up

o (X)

Numerical approximations to derivatives
Vi(x)

H(x) = V2f(x)

fx) = ¥ 200 (5 o)




Summary: Optimality Conditions

» Local minimum x* if f(x*) < f(x) for all x € N(x*) C D
Global minimum if f(x*) < f(x) for all x € D
Sufficient conditions for a strict local optimizer

Vf(x*) = 0 (stationarity)
V2f(x*) is positive definite

v

v

v

Convex optimization has a convex objective and a convex feasible set

v

The minimum in convex optimization is always a global minimum

A Ay Hete ‘



Summary: R Commands

digitsBase(...)
strtoi(...)

%%

drop (A)

t (A)

diag(n)

solve (A),ginv (A)
det (A)

eigen (A)

is.positive.definite (A), ...

D(f, x)

eval (£, ...)

optimHess (...)
taylor(...),polyval(...)

A Ay Hete 4

Convert number from base 10 to another base
Convert a number from any base to base 10
Dot product, matrix multiplication

Deletes dimensions in A with only one value
Transpose a matrix A

Identity matrix of size nx n

Inverse or pseudoinverse of a matrix A
Determinant of A if existent

Eigenvalues and eigenvectors of a matrix
Tests if matrix A is positive definite, ...
Derivative of a function f regarding x
Evaluates an expression f at a specific point
Approximate to Hessian matrix

Taylor approximation
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