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Today’s Lecture

Objectives

1 Understanding how computers store and handle numbers

2 Repeating basic operations in linear algebra and their use in R

3 Recapitulating the concept of derivatives and the Taylor approximation

4 Formulating necessary and sufficient conditions for optimality
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Positional Notation

I Method of representing numbers

I Same symbol for different orders of magnitude (6= Roman numerals)

I Format is dndn−1 . . .d2d1 = dn ·bn−1 +dn−1 ·bn−2 + . . .+d2 ·b+d1

with
b base of the number
n number of digits
d digit in the i-th position of the number

I Example: 752 is 73 ·102 +52 ·10+21
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Base Conversions

I Numbers can be converted between bases
I Base 10 is default
I Binary system with base 2 common for computers

I Example: 752 in base 10 equals 1 011 110 000 in base 2

I Conversion from base b into base 10 via

dn ·bn−1 +dn−1 ·bn−2 + . . .+d2 ·b+d1

I Example: 101101011 in base 2

1 ·28 +0 ·27 +1 ·26 +1 ·25 +0 ·24 +1 ·23 +0 ·22 +1 ·21 +1

1 ·256+0 ·128+1 ·64+1 ·32+0 ·16+1 ·8+0 ·4+1 ·2+1

=363 in base 10
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Base Conversions

Question

I Convert the number 10 011 010 from base 2 into base 10
I 262
I 138
I 154

I Visit http://pingo.upb.de with code 1523

Question

I Convert the number 723 from base 10 into base 2
I 111 010 011
I 10 011 010 011
I 1 011 010 011

I Visit http://pingo.upb.de with code 1523
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Base Conversions

I Conversion scheme of number s1 from base 10 into base b:

Start Integer part of division Remainder

s1 s2 :=
⌊ s1

b

⌋
r1 := s1 mod b

s2 s3 :=
⌊ s2

b

⌋
r2 := s2 mod b

. . .

sm
⌊ sm

b

⌋ !
= 0 rm := sm mod b

I The result is r1r2 . . . rm
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Base Conversions

Example: convert 363 from base 10 into base 2

I Calculation steps:

Start Integer division by 2 Remainder

363 181 1
181 90 1
90 45 0
45 22 1
22 11 0
11 5 1
5 2 1
2 1 0
1 0 1

I Result: 101101011 in base 2
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Base Conversions in R

I Load necessary library sfsmisc

library(sfsmisc)

I Call function digitsBase(s, base=b) to convert s into base b

# convert the number 450 from base 10 into base 8
digitsBase(450, base=8)

## Class 'basedInt'(base = 8) [1:1]
## [,1]
## [1,] 7
## [2,] 0
## [3,] 2

I Call strtoi(d, base=b) to convert d from base b into base 10

# convert the number 10101 from base 2 into base 10
strtoi(10101, base=2)

## [1] 21
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Floating-Point Representation

I Floating point is the representation to approximate real numbers in
computing

(−1)sign · significand ·baseexponent

I Significand and exponent have a fixed number of digits

I More digits for the significand (or mantissa) increase accuracy

I The exponent controls the range of numbers

I Examples
256.78 → +2.5678 ·102

−256.78 → −2.5678 ·102

0.00365 → +3.65 ·10−3

I Very large and very small numbers are often written in scientific
notation (also named E notation)
→ e. g. 2.2e6 = 2.2 ·106 = 2200000, 3.4e−2 = 0.034
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Limited Precision of Floating-Point Numbers

I The limited precision of a computer leads false results

x <- 10^30 + 10^(-20)
x - 10^30

## [1] 0

sin(pi) == 0

## [1] FALSE

3 - 2.9 == 0.1

## [1] FALSE
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Limited Precision of Floating-Point Numbers

I Workaround is to use round(x) but this cuts all non-integer digits

round(sin(pi))

## [1] 0

I A better method is to use a tolerance for the comparison

a <- 3 - 2.9
b <- 0.1
tol <- 1e-10
abs(a - b) <= tol

## [1] TRUE

I Numbers that are too large can cause an overflow

2*10^900

## [1] Inf
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Dot Product

I The dot product (or scalar product) takes two equal-size vectors and
returns a scalar, as defined by

a ·b = aT b =
n

∑
i=1

aibi = a1b1 +a2b2 + . . .+anbn

with a = [a1,a2, . . . ,an]
T ∈ Rn and b = [b1,b2, . . . ,bn]

T ∈ Rn

I Usage in R via the operator %*%

A <- c(1, 2, 3)
B <- c(4, 5, 6)
A %*% B

## [,1]
## [1,] 32

# deletes dimensions which have only one value
drop(A %*% B)

## [1] 32
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Properties of the Dot Product

I Cummutative

a ·b = b ·a

I Distributive over vector addition

a · (b+c) = a ·b+a ·c

I Bilinear

a · (rb+c) = r (a ·b)+a ·b with r ∈ R

I Scalar multiplication

(r1a) · (r2b) = r1r2 (a ·b) with r1, r2 ∈ R

I Two non-zero vector a and b are orthogonal if and only if a ·b = 0
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(Vector) Norm

I The norm is a real number which gives us information about the
“length” or “magnitude” of a vector

I It is defined as ‖·‖ 7→ R≥0 such that

1 ‖x‖> 0 if x 6= [0, . . . ,0]T and ‖x‖= 0 if and only if x = [0, . . . ,0]T

2 ‖rx‖= ‖r‖ ‖x‖ for any scalar r ∈ R

3 ‖x +y‖ ≤ ‖x‖+‖y‖
I This definition is highly abstract, many variants exist

I The so-called inner product 〈a,b〉 is a generalization to abstract vector
spaces over a field of scalars (e. g. C)
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Common Variants of Vector Norms

I The absolute-value norm equals the absolute value, i. e.

‖x‖= |x | for x ∈ R

I The Euclidean norm (or L2-norm) is the intuitive notion of length

‖x‖2 =
√

x ·x =
√

x2
1 + . . .x2

n

I The Manhattan norm (or L1-norm) is the distance on a rectangular grid

‖x‖1 =
n

∑
i=1
|xi |

I Their generalization is the p-norm

‖x‖p =

(
n

∑
i=1
|xi |p

)1/p

for p ≥ 1
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L1- vs. L2-Norm

Blue→ Euclidean distance
Black→ Manhattan distance

Question

I What is the distance d = bottom left → top right in L1- and L2-norm?
I ‖d‖1 = 8, ‖d‖2 = 16
I ‖d‖1 = 8, ‖d‖2 =

√
32

I ‖d‖1 =
√

32, ‖d‖2 = 8

I Visit http://pingo.upb.de with code 1523
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Vector Norms in R

I No default built-in function, instead calculate the L1- and L2-norm
manually

x <- c(1, 2, 3)
sum(abs(x)) # L1-norm

## [1] 6

sqrt(sum(x^2)) # L2-norm

## [1] 3.741657

I The p-norm needs to be computed as follows

(sum(abs(x)^3))^(1/3) # 3-norm

## [1] 3.301927
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Scalar Multiplication

I Definition: λx = xλ =

λx1
...

λxn

 λA = Aλ =

λa11 · · · λa1m
...

. . .
...

λan1 · · · anm


I Use the default multiplication operator *

5*c(1, 2, 3)

## [1] 5 10 15

m <- matrix(c(1,2, 3,4, 5,6), ncol=3)
m

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6

5*m

## [,1] [,2] [,3]
## [1,] 5 15 25
## [2,] 10 20 30
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Transpose

I The transpose of a matrix A is another matrix AT where the values in
columns and rows are flipped

AT := [aji ]ij

I Example:

[
1 3 5
2 4 6

]T

=

[
1 2
3 4
5 6

]
I Transpose via t(A)

m

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6

t(m)

## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
## [3,] 5 6
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Matrix-by-Vector Multiplication

I Definition:

Ax =


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm




x1
x2
...

xn

=


a11x1 +a12x2 + · · ·+a1mxn
a21x1 +a22x2 + · · ·+a2mxn

...
an1x1 +an2x2 + · · ·+anmxn


with A ∈ Rn×m, x ∈ Rn and Ax ∈ Rn

I Use operator %*% in R

m %*% x

## [,1]
## [1,] 22
## [2,] 28
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Element-Wise Matrix Multiplication

I For matrices A ∈ Rn×m and B ∈ Rn×m, it returns a matrix C ∈ Rn×m of
defined as

cij = aijbij

I The default multiplication operator * performs an element-wise
multiplication
m

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6

m*m

## [,1] [,2] [,3]
## [1,] 1 9 25
## [2,] 4 16 36
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Matrix-by-Matrix Multiplication

I Given matrices A ∈ Rn×m and B ∈ Rm×l , then the matrix multiplication
obtains C = AB ∈ Rn×l , defined by

cij =
m

∑
k=1

aik bkj

I It is implemented by the operator %*%

m

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6

t(m)

## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
## [3,] 5 6

m %*% t(m)

## [,1] [,2]
## [1,] 35 44
## [2,] 44 56
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Identity Matrix

I The identity matrix

In = diag(1,1, . . . ,1) ∈ Rn×n

is a square matrix with 1s on the diagonal and 0s elsewhere

I It fulfills

InA = AIm = A

given a matrix A ∈ Rn×m

I The command diag(n) creates an identity matrix of size n×n

diag(3)

## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
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Matrix Inverse

I The inverse of a square matrix A is a matrix A−1 such that

AA−1 = I (note that generally this is 6= A−1A)

I A square matrix has an inverse if and only if its determinant detA 6= 0

I The direct calculation is numerically highly unstable, and thus one
often rewrites the problem to solve a system of linear equations
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Matrix Inverse in R

I solve() calculates the inverse A−1 of a square matrix A

sq.m <- matrix(c(1,2, 3,4), ncol=2)
sq.m

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4

solve(sq.m)

## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5

sq.m %*% solve(sq.m) - diag(2) # post check

## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
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Pseudoinverse

I The pseudoinverse A+ ∈ Rm×n is a generalization of the inverse of a
matrix A ∈ Rn×m; fulfilling among others

AA+ = I
I ginv(A) inside the library MASS calculates the pseudoinverse

library(MASS)

ginv(m)

## [,1] [,2]
## [1,] -1.3333333 1.0833333
## [2,] -0.3333333 0.3333333
## [3,] 0.6666667 -0.4166667

m %*% ginv(m)

## [,1] [,2]
## [1,] 1.000000e+00 0
## [2,] 2.664535e-15 1

I If AA+ is invertible, it is given by

A+ := AT (AAT)−1
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Determinant

I The determinant detA is a useful value for a square matrix A, relating
to e. g. the region it spans

I A square matrix is also invertible if and only if detA 6= 0

Calculation
I The determinant of of a 2×2 matrix A is defined by

detA =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣= a11a22−a12a21

I A similar simple rule exists for matrices of size 3×3, for all others one
usually utilizes the Leibniz or the Laplace formula

I Calculation in R is via det(A)

det(sq.m)

## [1] -2
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Eigenvalues and Eigenvectors

I An eigenvector v of a square matrix A is a vector that does not change
its direction under the linear transformation by A ∈ Rn×n

I This is given by

Av = λv for v 6= [0, . . .0]T ∈ Rn

where λ ∈ R is the eigenvalue associated with the eigenvector v

I Example: the matrix A =

2 0 1
0 2 0
1 0 2

 has the following eigenvectors

and eigenvalues

λ1 = 1,v1 =

 1
0
−1

 , λ2 = 2,v2 =

0
1
0

 , λ3 = 3,v3 =

1
0
1
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Eigenvalues and Eigenvectors

Geometric interpretation

λx

λy

x

y

Matrix A stretches the vector v
but does not change its direction
→ v is an eigenvector of A
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Eigenvalues and Eigenvectors

Question

I Given A =

1 0 0
1 2 0
2 3 3


I Which of the following is not an eigenvector/eigenvalue pair?

I λ1 = 1, v1 =

 2
3
− 2

3
1
3


I λ2 = 2, v2 =

2
1
1


I λ3 = 3, v3 =

0
0
1


I Visit http://pingo.upb.de with code 1523
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Eigenvalues and Eigenvectors in R

I Eigenvalues and eigenvectors of a square matrix A via eigen(A)
sq.m

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4

e <- eigen(sq.m)
e$val # eigenvalues

## [1] 5.3722813 -0.3722813

e$vec # eigenvectors

## [,1] [,2]
## [1,] -0.5657675 -0.9093767
## [2,] -0.8245648 0.4159736
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Definiteness of Matrices

I The definiteness of a matrix helps in determining the nature of optima
I Definitions

I The symmetric matrix A ∈ Rn×n is positive definite if

xT Ax > 0 for all x 6= [0, . . . ,0]T

I The symmetric matrix A ∈ Rn×n is positive semi-definite if

xT Ax ≥ 0 for all x 6= [0, . . . ,0]T

Example

The identity matrix I2 =

[
1 0
0 1

]
is positive definite, since

xT I2x = [z1z2]

[
1 0
0 1

][
z1

z2

]
= z2

1 + z2
2 > 0 for all z 6= [0,0]T
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Positive Definiteness

I Tests for positive definiteness
I Evaluating xT Ax for all x is impractical
I All eigenvalues λi of A are positive
I Check if all upper-left sub-matrices have positive determinants

(Sylvester’s criterion)
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Definiteness Tests in R
The library matrixcalc offers methods to test all variants of definiteness

library(matrixcalc)

I <- diag(3)
I

## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1

is.negative.definite(I)

## [1] FALSE

is.positive.definite(I)

## [1] TRUE

C <- matrix(c(-2,1,0, 1,-2,1, 0,1,-2),
nrow=3, byrow=TRUE)

C

## [,1] [,2] [,3]
## [1,] -2 1 0
## [2,] 1 -2 1
## [3,] 0 1 -2

is.positive.semi.definite(C)

## [1] FALSE

is.negative.semi.definite(C)

## [1] TRUE
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Differentiability

Definition
Let f : D ⊆ Rn→ R be a function and x0 ∈ D

I f is differentiable at the point x0 if the following limit exists

f ′(x0) =
df
dx

(x0) = lim
ε→0

f (x0 + ε)− f (x0)

ε

the limit f ′(x0) is called the derivative of f at the point x0

I If it is differentiable for all x ∈ D, then f is differentiable with derivative f ′

Remarks
I Similarly, the 2nd derivative f ′′ and, by induction, the n-th derivative f (n)

I Geometrically, f ′(x0) is the slope of the tangent to f (x) at x0
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Differentiability

Examples

f

x

D

f

x

D

xn

f

x

D

xn

continuous continuous discontinuous
differentiable not differentiable not differentiable

Question

I What is correct for the function f (x) = 2x−1
x+2 ?

I Continuous and differentiable
I Continuous but not differentiable
I Discontinuous and not differentiable

I Visit http://pingo.upb.de with code 1523
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Chain Rule

Let v(x) be a differentiable function, then the chain rule gives

du(v(x))
dx

=
du
dx

=
du
dv

dv
dt

Example Given u(v(x)) = sinπvx , then

du(v(x))
dx

=
dsinπv

dx
d(πvx)

dx
= cos(πvx)πv

Question

I What is the derivative of log4− x?
I 1

x−4
I 4

x
I 1

4−x

I Visit http://pingo.upb.de with code 1523
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Partial Derivative

I The partial derivative with respect to xi is given by

∂ f
∂xi

(x) := lim
ε→0

f (x1, . . . ,xi + ε, . . . ,xn)− f (x1, . . . ,xi , . . . ,xn)

ε

I f is called partially differentiable, if f is differentiable at each point with
respect to all variables

I Partial derivatives can be exchanged in their order

∂

∂xi

(
∂ f
∂xj

)
=

∂

∂xj

(
∂ f
∂xi

)
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Derivatives in R

I The function D(f, "x") derives an expression f symbolically

f <- expression(x^5 + 2*y^3 + sin(x) - exp(y))

D(f, "x")

## 5 * x^4 + cos(x)

D(D(f, "y"),"y")

## 2 * (3 * (2 * y)) - exp(y)

D(D(f, "x"),"y")

## [1] 0

I To compute the derivative at a specific point, we use eval(expr)

eval(D(f, "x"), list(x=2, y=1))

## [1] 79.58385
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Finite Differences

I Numerical methods to approximate derivatives numerically

I Use a step size h, usually of order 10−6

I Forward differences

f ′(x) =
f (x +h)− f (x)

h

I Backward differences

f ′(x) =
f (x)−h

h

I Centered differences

f ′(x) =
f (x +h)− f (x−h)

2h

x

h
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Higher-Order Differences

Use the previous formulae to derive 2nd order central differences

f ′′(x)≈ f ′(x +h)− f ′(x)
h

≈

f (x +h)− f (x)

h
−

f (x)− f (x−h)

h
h

=
f (x +h)−2f (x)+ f (x−h)

h2
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Finite Differences in R

Question

I Given f (x) = sinx

I Set h <- 10e-6
I How to calculate the derivative at x = 2 with centered differences in R?

I (sin(2+h) - sin(2-h)) / (2*h)
I (sin(2+h) - sin(2-h)) / 2*h
I (sin(2+h) - sin(2)) / (2*h)

I Visit http://pingo.upb.de with code 1523
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Gradient and Hessian Matrix

I Gradient of f : Rn→ Rn

∇f (x) =


∂ f

∂x1
(x)

...
∂ f

∂xn
(x)


I The second derivatives of f are called the Hessian (matrix)

H(x) = ∇
2f (x) =


∂ 2f
∂x2

1
(x) · · · ∂ 2f

∂x1∂xn
(x)

...
. . .

...
∂ 2f

∂xn∂x1
(x) · · · ∂ 2f

∂x2
n
(x)


I Since the order of derivatives can be exchanged, the Hessian H(x is

symmetric, i. e. H(x) = (H(x))T
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Hessian Matrix in R

I optimHess(x, f, ...) approximates the Hessian matrix of f

f <- function(x) (x[1]^3*x[2]^2-x[2]^2+x[1])
optimHess(c(3,2), f, control=(ndeps=0.0001))

## [,1] [,2]
## [1,] 72 108
## [2,] 108 52

I Above example: forward differences to approximate the Hessian Matrix
of f (x1,x2) at a given point (x1,x2) = (3,2) with a given step size
h = 0.0001
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Taylor Series

I Taylor series approximates f around a point x0 as a power series

f (x) = f (x0)+
f ′(x0)

1!
(x− x0)+

f ′′(x0)

2!
(x− x0)

2

+
f ′′′(x0)

3!
(x− x0)

3 + . . .

=
∞

∑
n=0

f (n)(x0)

n!
(x− x0)

n.

I f must be infinitely differentiable

I If x0 = 0 the series is also called Maclaurin series

I To obtain an approximation of f , cut off after order n

50Numerical Analysis: Taylor Approximation



Taylor Approximation
Approximation of order n (blue) around x0 = 0 for f (x) = sinx (in gray)
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Taylor Approximation
Approximation of order n (blue) around x0 = 0 for f (x) = ex (in gray)
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Taylor Approximation
Approximation of order n (blue) around x0 = 0 for f (x) = logx +1 (in gray)
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Taylor Series

Question

I What is the Taylor series for f (x) =
1

1− x
with x0 = 0?

I f (x) = 1
x +1+ x + x2 + x3 + . . .

I f (x) = 1+ x + x2 + x3 + . . .
I f (x) = x + x2 + x3 + . . .

I Visit http://pingo.upb.de with code 1523

Question

I What is the Taylor series for f (x) = ex with x0 = 0
I f (x) = x

1! +
x2

2! +
x3

3! + . . .

I f (x) = 1+ x
1 +

x2

2 + x3

3 + . . .

I f (x) = 1+ x
1! +

x2

2! +
x3

3! + . . .

I Visit http://pingo.upb.de with code 1523
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Taylor Series

Question
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1
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Question

I What is the Taylor series for f (x) = ex with x0 = 0
I f (x) = x

1! +
x2

2! +
x3

3! + . . .

I f (x) = 1+ x
1 +

x2

2 + x3

3 + . . .

I f (x) = 1+ x
1! +

x2

2! +
x3

3! + . . .

I Visit http://pingo.upb.de with code 1523
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Taylor Approximation with R

I Load library pracma
library(pracma)

I Calculate approximation up to degree 4 with taylor(f, x0, n)

f <- function(x) cos(x)
taylor.poly <- taylor(f, x0=0, n=4)
taylor.poly

## [1] 0.04166733 0.00000000 -0.50000000 0.00000000 1.00000000

I Evaluate Taylor approximation p at x with polyval(p, x)

polyval(taylor.poly, 0.1) # x = 0.1

## [1] 0.9950042

cos(0.1) # for comparison

## [1] 0.9950042

polyval(taylor.poly, 0.5) - cos(0.5)

## [1] 2.164622e-05
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Taylor Approximation in R

Visualizing Taylor approximation

x <- seq(-7.0, 7.0, by=0.01)
y.f <- f(x)
y.taylor <- polyval(taylor.poly, x)
plot(x, y.f, type="l", col="gray", lwd=2, ylim=c(-1, +1))
lines(x, y.taylor, col="darkblue")
grid()
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Extreme Value Theorem

Theorem
I Given: real-valued function f

I f continuous in the closed and bounded interval [xL,xU ]

I Then f must attain a maximum and minimum at least once

I I. e. there exists xmax,xmin ∈ [xL,xU ] such that

f (xmax)≥ f (x)≥ f (xmin) for all x ∈ [xL,xU ]

f(xmax)

f(xmin)

xmax xminxL xU
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Optimum

Definitions

I x∗ is a local minimum if x∗ ∈ D and if there is a neighborhood N(x∗),
such that

f (x∗)≤ f (x) for all x ∈ N(x∗)⊆ D

I x∗ is a strict local minimum if x∗ ∈ D and if there is a neighborhood
N(x∗), such that

f (x∗)< f (x) for all x ∈ N(x∗)⊆ D
I x∗ is a global minimum if x∗ ∈ D and

f (x∗)≤ f (x) for all x ∈ D

→What conditions need to be fulfilled for a minimum?

x*

N(x*)

D
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Optimality Condition

Conditions for a minimum x∗

1st order condition f ′(x∗) = 0 → necessary
2nd order condition f ′′(x∗)> 0 → sufficient

Interpretation through Taylor series
f (x +h) = f (x)+ f ′(x)h+O

(
h2
)

Then

f (x +h)− f (x)≥ 0

f (x−h)− f (x)≥ 0

}
⇒ f ′(x) = 0

f (x +h)− f (x) =
1
2

f ′′(x)h2 +O
(
h3) > 0

f (x−h)− f (x) =
1
2

f ′′(x)h2 +O
(
h3) > 0

⇒ f ′′(x)> 0

f

xx-h x+h
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Optimality Condition

Theorem (sufficient optimality condition)
Let f be twice continuously differentiable and let x∗ ∈ Rn, if

1 First order condition

∇f (x∗) = [0, . . . ,0]T

2 Second order condition

∇
2f (x∗) is positive definite

then x∗ is a strict local minimizer
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Optimality Conditions

The previous theory does not cover all cases

I Imagine f (x) = |x |

−3 −2 −1 0 1 2 3

0.
0

1.
5

3.
0

x

ab
s(

x)

I f (x) has a global minimum at x∗ = 0

I Since f is not differentiable, the optimality conditions do not apply
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Stationarity

Definition
I Let f be continuously differentiable. A point x∗ ∈ Rn is stationary if

∇f (x∗) = 0

I x∗ is called a saddle point if it is neither a local minimum or maximum

Examples

I f (x) =−x2 has only one stationary
x∗ = 0, since ∇f (x∗) =−2x∗ = 0

I f (x) = x3 has a saddle point at x∗ = 0

I f (x1,x2) = x2
1 − x2

2 has a saddle point
x∗ = [0,0]T

x

y

z

●
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Stationary Points

Nature of x∗ Definiteness of H xT Hx λi Illustration

Minimum positive definite > 0 > 0

Valley positive semi-definite ≥ 0 ≥ 0

Saddle point indefinite 6= 0 6= 0

Ridge negative semi-definite ≤ 0 ≤ 0

Maximum negative definite < 0 < 0
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Convexity

Definitions
I A domain D ⊆ Rn is convex if

∀x1,x2 ∈ D ∀α ∈ [0,1] αx1 +(1−α)x2 ∈ D

I A function f : D→ R is convex if

∀x1,x2 ∈ D ∀α ∈ [0,1] f (αx1 +(1−α)x2)≤ αx1 +(1−α)x2

D

D
D

convex non-convex / concave

65Numerical Analysis: Optimality Conditions



Global Optimum

I Convexity gives information about the curvature, thus stationary points

I Constraints of an optimization define the feasible set

D = {x ∈ D‖g(x)≤ 0,h(x) = 0}

which can be either convex or concave

I Global minima are usually difficult to find numerically, except for cases
of convex optimization

Definition
An optimization problem is convex if both the objective function f and its
feasible set are convex

Theorem
The solution of a convex optimization is also its global solution
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Summary: Linear Algebra

Dot product a ·b = aT b

Norm ‖x‖

Transpose AT = [aji ]ij

Identity matrix In = diag(1, . . . ,1) ∈ Rn×n

Inverse A−1 ∈ Rn×n such that AA−1 = I

Pseudoinverse A+ ∈ Rm×n such that AA+ = I

Determinant detA

Eigenvalue, -vector Av = λv for v 6= 0

Positive definite xT Ax > 0 for x 6= 0
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Summary: Numerical Analysis

Partial derivative df
dxi

(x)

Finite differences Numerical approximations to derivatives

Gradient ∇f (x)

Hessian H(x) = ∇2f (x)

Taylor series f (x) =
∞

∑
n=0

f (n)(x0)
n! (x− x0)

n
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Summary: Optimality Conditions

I Local minimum x∗ if f (x∗)≤ f (x) for all x ∈ N(x∗)⊆ D

I Global minimum if f (x∗)≤ f (x) for all x ∈ D
I Sufficient conditions for a strict local optimizer

1 ∇f (x∗) = 0 (stationarity)
2 ∇2f (x∗) is positive definite

I Convex optimization has a convex objective and a convex feasible set

I The minimum in convex optimization is always a global minimum
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Summary: R Commands

digitsBase(...) Convert number from base 10 to another base

strtoi(...) Convert a number from any base to base 10

%*% Dot product, matrix multiplication

drop(A) Deletes dimensions in A with only one value

t(A) Transpose a matrix A

diag(n) Identity matrix of size n×n

solve(A), ginv(A) Inverse or pseudoinverse of a matrix A

det(A) Determinant of A if existent

eigen(A) Eigenvalues and eigenvectors of a matrix

is.positive.definite(A), . . . Tests if matrix A is positive definite, . . .

D(f, x) Derivative of a function f regarding x

eval(f, ...) Evaluates an expression f at a specific point

optimHess(...) Approximate to Hessian matrix

taylor(...), polyval(...) Taylor approximation
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