Numerical Analysis

Computational Economics Practice Winter Term 2015/16 Stefan Feuerriegel

Today's Lecture

Objectives

- 1 Understanding how computers store and handle numbers
- 2 Repeating basic operations in linear algebra and their use in R
- 3 Recapitulating the concept of derivatives and the Taylor approximation
- 4 Formulating necessary and sufficient conditions for optimality

Outline

- 1 Number Representations
- 2 Linear Algebra
- 3 Differentiation
- 4 Taylor Approximation
- 5 Optimality Conditions
- 6 Wrap-Up

Outline

1 Number Representations

- 2 Linear Algebra
- 3 Differentiation
- 4 Taylor Approximation
- 5 Optimality Conditions
- 6 Wrap-Up

Positional Notation

- Method of representing numbers
- ► Same symbol for different orders of magnitude (≠ Roman numerals)
- ► Format is $d_n d_{n-1} \dots d_2 d_1 = d_n \cdot b^{n-1} + d_{n-1} \cdot b^{n-2} + \dots + d_2 \cdot b + d_1$ with
 - b base of the number
 - *n* number of digits
 - d digit in the *i*-th position of the number
- Example: 752 is $7_3 \cdot 10^2 + 5_2 \cdot 10 + 2_1$

- Numbers can be converted between bases
 - Base 10 is default
 - Binary system with base 2 common for computers
- Example: 752 in base 10 equals 1 011 110 000 in base 2
- Conversion from base b into base 10 via

$$d_n \cdot b^{n-1} + d_{n-1} \cdot b^{n-2} + \ldots + d_2 \cdot b + d_1$$

Example: 101101011 in base 2

$$1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1$$

$$1 \cdot 256 + 0 \cdot 128 + 1 \cdot 64 + 1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1$$

=363 in base 10

Question

- Convert the number 10011010 from base 2 into base 10
 - ▶ 262
 - 138
 - 154
- Visit http://pingo.upb.de with code 1523

Question

- Convert the number 723 from base 10 into base 2
 - ▶ 111010011
 - ▶ 10011010011
 - ▶ 1011010011
- Visit http://pingo.upb.de with code 1523

Question

- Convert the number 10011010 from base 2 into base 10
 - ▶ 262
 - 138
 - 154
- Visit http://pingo.upb.de with code 1523

Question

- Convert the number 723 from base 10 into base 2
 - 111010011
 - 10011010011
 - 1011010011
- Visit http://pingo.upb.de with code 1523

Conversion scheme of number s₁ from base 10 into base b:

Start	Integer part of division	Remainder
<i>s</i> ₁	$s_2 := \left\lfloor rac{s_1}{b} ight floor$	$r_1 := s_1 \mod b$
s ₂	$s_3 := \left\lfloor rac{s_2}{b} ight floor$	$r_2 := s_2 \mod b$
s _m	$\left\lfloor rac{s_m}{b} ight floor \stackrel{!}{=} 0$	$r_m := s_m \mod b$

• The result is $r_1 r_2 \dots r_m$

Example: convert 363 from base 10 into base 2

► Calculation steps:

Start	Integer division by 2	Remainder
363	181	1
181	90	1
90	45	0
45	22	1
22	11	0
11	5	1
5	2	1
2	1	0
1	0	1

► Result: 101 101 011 in base 2

Base Conversions in R

Load necessary library sfsmisc

```
library(sfsmisc)
```

► Call function digitsBase(s, base=b) to convert s into base b

```
# convert the number 450 from base 10 into base 8
digitsBase(450, base=8)
## Class 'basedInt'(base = 8) [1:1]
## [,1]
## [1,] 7
## [2,] 0
## [3,] 2
```

Call strtoi(d, base=b) to convert d from base b into base 10

```
# convert the number 10101 from base 2 into base 10
strtoi(10101, base=2)
## [1] 21
```

Floating-Point Representation

 Floating point is the representation to approximate real numbers in computing

 $(-1)^{sign} \cdot significand \cdot base^{exponent}$

- Significand and exponent have a fixed number of digits
- More digits for the significand (or mantissa) increase accuracy
- The exponent controls the range of numbers

```
    Examples
```

256.78	\rightarrow	$+2.5678 \cdot 10^{2}$
-256.78	\rightarrow	$-2.5678 \cdot 10^{2}$
0.00365	\rightarrow	$+3.65 \cdot 10^{-3}$

 Very large and very small numbers are often written in scientific notation (also named E notation)

 \rightarrow e.g. 2.2e6 = 2.2 \cdot 10⁶ = 2200000, 3.4e-2 = 0.034

Limited Precision of Floating-Point Numbers

The limited precision of a computer leads false results

```
x <- 10^30 + 10^(-20)
x - 10^30
## [1] 0
sin(pi) == 0
## [1] FALSE
3 - 2.9 == 0.1
## [1] FALSE
```

Limited Precision of Floating-Point Numbers

Workaround is to use round (x) but this cuts all non-integer digits
round (sin (pi))

[1] 0

A better method is to use a tolerance for the comparison

```
a <- 3 - 2.9
b <- 0.1
tol <- 1e-10
abs(a - b) <= tol
## [1] TRUE
```

Numbers that are too large can cause an overflow

```
2*10^900
## [1] Inf
```

Outline

- 1 Number Representations
- 2 Linear Algebra
 - 3 Differentiation
 - 4 Taylor Approximation
 - 5 Optimality Conditions
- 6 Wrap-Up

Dot Product

The dot product (or scalar product) takes two equal-size vectors and returns a scalar, as defined by

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}^T \boldsymbol{b} = \sum_{i=1}^n a_i b_i = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n$$

with
$$\boldsymbol{a} = [a_1, a_2, \dots, a_n]^T \in \mathbb{R}^n$$
 and $\boldsymbol{b} = [b_1, b_2, \dots, b_n]^T \in \mathbb{R}^n$

Usage in R via the operator %*%

```
A <- c(1, 2, 3)
B <- c(4, 5, 6)
A %*% B
## [,1]
## [1,] 32
# deletes dimensions which have only one value
drop(A %*% B)
## [1] 32
```

Numerical Analysis: Linear Algebra

Properties of the Dot Product

Cummutative

$$a \cdot b = b \cdot a$$

Distributive over vector addition

$$\boldsymbol{a}\cdot(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a}\cdot\boldsymbol{b}+\boldsymbol{a}\cdot\boldsymbol{c}$$

Bilinear

$$\boldsymbol{a} \cdot (r\boldsymbol{b} + \boldsymbol{c}) = r(\boldsymbol{a} \cdot \boldsymbol{b}) + \boldsymbol{a} \cdot \boldsymbol{b}$$
 with $r \in \mathbb{R}$

Scalar multiplication

$$(r_1 \boldsymbol{a}) \cdot (r_2 \boldsymbol{b}) = r_1 r_2 (\boldsymbol{a} \cdot \boldsymbol{b})$$
 with $r_1, r_2 \in \mathbb{R}$

• Two non-zero vector \boldsymbol{a} and \boldsymbol{b} are orthogonal if and only if $\boldsymbol{a} \cdot \boldsymbol{b} = 0$

(Vector) Norm

- ► The norm is a real number which gives us information about the "length" or "magnitude" of a vector
- \blacktriangleright It is defined as $\|{\cdot}\|\mapsto \mathbb{R}^{\geq 0}$ such that

1 $\|\boldsymbol{x}\| > 0$ if $\boldsymbol{x} \neq [0, ..., 0]^T$ and $\|\boldsymbol{x}\| = 0$ if and only if $\boldsymbol{x} = [0, ..., 0]^T$

2
$$||r\boldsymbol{x}|| = ||r|| ||\boldsymbol{x}||$$
 for any scalar $r \in \mathbb{R}$

3 $\|x + y\| \le \|x\| + \|y\|$

- This definition is highly abstract, many variants exist
- ► The so-called inner product (*a*, *b*) is a generalization to abstract vector spaces over a field of scalars (e.g. C)

Common Variants of Vector Norms

► The absolute-value norm equals the absolute value, i.e.

$$||x|| = |x|$$
 for $x \in \mathbb{R}$

• The Euclidean norm (or L^2 -norm) is the intuitive notion of length

$$\|\boldsymbol{x}\|_2 = \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}} = \sqrt{x_1^2 + \dots x_n^2}$$

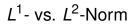
• The Manhattan norm (or L^1 -norm) is the distance on a rectangular grid

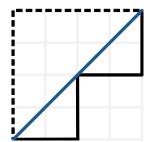
$$\|\boldsymbol{x}\|_1 = \sum_{i=1}^n |x_i|$$

Their generalization is the p-norm

$$\|\boldsymbol{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$
 for $p \ge 1$

Numerical Analysis: Linear Algebra





 $\begin{array}{l} \text{Blue} \rightarrow \text{Euclidean distance} \\ \text{Black} \rightarrow \text{Manhattan distance} \end{array}$

Question

- What is the distance d = bottom left \rightarrow top right in L^1 and L^2 -norm?
 - $\|d\|_1 = 8, \|d\|_2 = 16$
 - $\|d\|_1 = 8, \|d\|_2 = \sqrt{32}$
 - $\|d\|_1 = \sqrt{32}, \|d\|_2 = 8$
- Visit http://pingo.upb.de with code 1523

Vector Norms in R

No default built-in function, instead calculate the L¹- and L²-norm manually

```
x <- c(1, 2, 3)
sum(abs(x)) # L1-norm
## [1] 6
sqrt(sum(x^2)) # L2-norm
## [1] 3.741657</pre>
```

The p-norm needs to be computed as follows

```
(sum(abs(x)^3))^(1/3) # 3-norm
## [1] 3.301927
```

Scalar Multiplication

► Definition:
$$\lambda \mathbf{x} = \mathbf{x}\lambda = \begin{bmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{bmatrix}$$
 $\lambda A = A\lambda = \begin{bmatrix} \lambda a_{11} & \cdots & \lambda a_{1m} \\ \vdots & \ddots & \vdots \\ \lambda a_{n1} & \cdots & a_{nm} \end{bmatrix}$

Use the default multiplication operator *

```
5*c(1, 2, 3)
## [1] 5 10 15
m <- matrix(c(1,2, 3,4, 5,6), ncol=3)
m
## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
5*m
## [,1] [,2] [,3]
## [1,] 5 15 25
## [2,] 10 20 30</pre>
```

Transpose

The transpose of a matrix A is another matrix A^T where the values in columns and rows are flipped

$$A^T := [a_{jj}]_{ij}$$

• Example:
$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

m			
##	[,1]	[,2]	[,3]
## [1,]	1	3	5
## [2,]	2	4	6
t (m)			
##	[,1]	[,2]	
## [1,]	1	2	
## [2,]	3	4	
## [3,]	5	6	

Numerical Analysis: Linear Algebra

Matrix-by-Vector Multiplication

Definition:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_n \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_n \end{bmatrix}$$

with $A \in \mathbb{R}^{n \times m}$, $\mathbf{x} \in \mathbb{R}^n$ and $A\mathbf{x} \in \mathbb{R}^n$

► Use operator %*% in R

m %*% x ## [,1] ## [1,] 22 ## [2,] 28

Element-Wise Matrix Multiplication

► For matrices $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times m}$, it returns a matrix $C \in \mathbb{R}^{n \times m}$ of defined as

 $c_{ij} = a_{ij}b_{ij}$

 The default multiplication operator * performs an element-wise multiplication

m				
##	[1,] [2,]	[,1] 1 2	[,2] 3 4	5
m*n	1			
# # # #	[1,]	[,1]	[,2] 9	[,3] 25
##	[2,]	4	16	36

Matrix-by-Matrix Multiplication

Given matrices A ∈ ℝ^{n×m} and B ∈ ℝ^{m×l}, then the matrix multiplication obtains C = AB ∈ ℝ^{n×l}, defined by

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

It is implemented by the operator %*%

m	t (m)
## [,1] [,2] [,3] ## [1,] 1 3 5 ## [2,] 2 4 6	## [,1] [,2] ## [1,] 1 2 ## [2,] 3 4 ## [3,] 5 6

m %*% t(m)

##		[,	1]	[,2]
##	[1,]	35	44
##	[2,]	44	56
Numerical Analysis: Linear Algebra				

Identity Matrix

► The identity matrix

 $I_n = \operatorname{diag}(1, 1, \ldots, 1) \in \mathbb{R}^{n \times n}$

is a square matrix with 1s on the diagonal and 0s elsewhere

It fulfills

$$I_n A = A I_m = A$$

given a matrix $A \in \mathbb{R}^{n \times m}$

► The command diag (n) creates an identity matrix of size *n* × *n*

```
diag(3)
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
```

Matrix Inverse

• The inverse of a square matrix A is a matrix A^{-1} such that

 $AA^{-1} = I$ (note that generally this is $\neq A^{-1}A$)

- A square matrix has an inverse if and only if its determinant det $A \neq 0$
- The direct calculation is numerically highly unstable, and thus one often rewrites the problem to solve a system of linear equations

Matrix Inverse in R

• solve () calculates the inverse A^{-1} of a square matrix A

```
sq.m <- matrix(c(1,2, 3,4), ncol=2)</pre>
sq.m
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
solve(sq.m)
## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5
sq.m %*% solve(sq.m) - diag(2) # post check
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
```

Pseudoinverse

► The pseudoinverse A⁺ ∈ ℝ^{m×n} is a generalization of the inverse of a matrix A ∈ ℝ^{n×m}; fulfilling among others

 $AA^+ = I$

ginv(A) inside the library MASS calculates the pseudoinverse
library(MASS)

ginv(m)

##	[2,]				
m %*% ginv (m)					
		[,1] 1.000000e+00 2.664535e-15			

► If *AA*⁺ is invertible, it is given by

```
\boldsymbol{A}^{+} := \boldsymbol{A}^{T} \left( \boldsymbol{A} \boldsymbol{A}^{T} \right)^{-1}Numerical Analysis: Linear Algebra
```

Determinant

- The determinant det A is a useful value for a square matrix A, relating to e.g. the region it spans
- A square matrix is also invertible if and only if det $A \neq 0$

Calculation

► The determinant of of a 2 × 2 matrix A is defined by

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

- ► A similar simple rule exists for matrices of size 3 × 3, for all others one usually utilizes the Leibniz or the Laplace formula
- Calculation in R is via det (A)

det (sq.m)

Numerical Analysis: Linear Algebra

Eigenvalues and Eigenvectors

- An eigenvector \mathbf{v} of a square matrix A is a vector that does not change its direction under the linear transformation by $A \in \mathbb{R}^{n \times n}$
- This is given by

$$oldsymbol{A}oldsymbol{v}=\lambda\,oldsymbol{v}$$
 for $oldsymbol{v}
eq \left[0,\ldots0
ight]^{T}\in\mathbb{R}^{n}$

where $\lambda \in \mathbb{R}$ is the eigenvalue associated with the eigenvector **v**

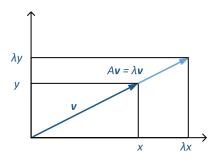
• Example: the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ has the following eigenvectors

and eigenvalues

$$\lambda_1 = 1, \boldsymbol{v}_1 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \quad \lambda_2 = 2, \boldsymbol{v}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad \lambda_3 = 3, \boldsymbol{v}_3 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

Eigenvalues and Eigenvectors

Geometric interpretation



Matrix A stretches the vector \mathbf{v} but does not change its direction $\rightarrow \mathbf{v}$ is an eigenvector of A

Numerical Analysis: Linear Algebra

Eigenvalues and Eigenvectors

Question

• Given
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 3 & 3 \end{bmatrix}$$

Which of the following is not an eigenvector/eigenvalue pair?

$$\lambda_1 = 1, \ \mathbf{v}_1 = \begin{bmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$

$$\lambda_2 = 2, \ \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

$$\lambda_3 = 3, \ \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Visit http://pingo.upb.de with code 1523

Eigenvalues and Eigenvectors in R

► Eigenvalues and eigenvectors of a square matrix A via eigen (A)

```
sq.m
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
e <- eigen(sq.m)
e$val # eigenvalues
## [1] 5.3722813 -0.3722813
e$vec # eigenvectors
## [,1] [,2]
## [1,] -0.5657675 -0.9093767
## [2,] -0.8245648 0.4159736
```

Definiteness of Matrices

- The definiteness of a matrix helps in determining the nature of optima
- Definitions
 - The symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if

$$\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} > 0$$
 for all $\boldsymbol{x} \neq [0, \dots, 0]^{T}$

• The symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite if

$$\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \geq 0$$
 for all $\boldsymbol{x} \neq [0, \dots, 0]^{T}$

Example

The identity matrix $l_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is positive definite, since $\mathbf{x}^T l_2 \mathbf{x} = \begin{bmatrix} z_1 z_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1^2 + z_2^2 > 0$ for all $\mathbf{z} \neq \begin{bmatrix} 0, 0 \end{bmatrix}^T$

Positive Definiteness

- Tests for positive definiteness
 - Evaluating $\mathbf{x}^T A \mathbf{x}$ for all \mathbf{x} is impractical
 - All eigenvalues λ_i of A are positive
 - Check if all upper-left sub-matrices have positive determinants (Sylvester's criterion)

Definiteness Tests in R

The library matrixcalc offers methods to test all variants of definiteness

```
library(matrixcalc)
```

```
I <- diag(3)
Т
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
is.negative.definite(I)
## [1] FALSE
is.positive.definite(I)
## [1] TRUE
```

```
C <- matrix(c(-2,1,0, 1,-2,1, 0,1,-2)),
           nrow=3, bvrow=TRUE)
## [,1] [,2] [,3]
## [1,] -2 1 0
## [2,] 1 -2 1
## [3,] 0 1 -2
is.positive.semi.definite(C)
## [1] FALSE
is.negative.semi.definite(C)
## [1] TRUE
```

Outline

- 1 Number Representations
- 2 Linear Algebra
- 3 Differentiation
- 4 Taylor Approximation
- 5 Optimality Conditions
- 6 Wrap-Up

Differentiability

Definition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function and $x_0 \in D$

• *f* is differentiable at the point x_0 if the following limit exists

$$f'(x_0) = \frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = \lim_{\varepsilon \to 0} \frac{f(x_0 + \varepsilon) - f(x_0)}{\varepsilon}$$

the limit $f'(x_0)$ is called the derivative of f at the point x_0

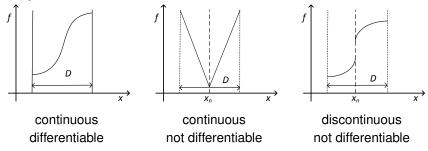
▶ If it is differentiable for all $x \in D$, then *f* is differentiable with derivative f'

Remarks

- Similarly, the 2nd derivative f'' and, by induction, the *n*-th derivative $f^{(n)}$
- Geometrically, $f'(x_0)$ is the slope of the tangent to f(x) at x_0

Differentiability

Examples



Question

- What is correct for the function $f(x) = \frac{2x-1}{x+2}$?
 - Continuous and differentiable
 - Continuous but not differentiable
 - Discontinuous and not differentiable
- Visit http://pingo.upb.de with code 1523

Chain Rule

Let v(x) be a differentiable function, then the chain rule gives

 $\frac{\mathrm{d}u(v(x))}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}t}$

Example Given $u(v(x)) = \sin \pi vx$, then

$$\frac{\mathrm{d}u(v(x))}{\mathrm{d}x} = \frac{\mathrm{d}\sin\pi v}{\mathrm{d}x}\frac{\mathrm{d}(\pi vx)}{\mathrm{d}x} = \cos{(\pi vx)}\pi v$$

Question

• What is the derivative of $\log 4 - x$?

$$\begin{array}{c} \frac{1}{x-4} \\ \frac{4}{x} \\ \frac{1}{4-x} \end{array}$$

Visit http://pingo.upb.de with code 1523

Numerical Analysis: Differentiation

Partial Derivative

► The partial derivative with respect to x_i is given by

$$\frac{\partial f}{\partial x_i}(\boldsymbol{x}) := \lim_{\varepsilon \to 0} \frac{f(x_1, \dots, x_i + \varepsilon, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{\varepsilon}$$

- ► f is called partially differentiable, if f is differentiable at each point with respect to all variables
- Partial derivatives can be exchanged in their order

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$$

Derivatives in R

► The function D (f, "x") derives an expression f symbolically

```
f <- expression(x^5 + 2*y^3 + sin(x) - exp(y))
D(f, "x")
## 5 * x^4 + cos(x)
D(D(f, "y"), "y")
## 2 * (3 * (2 * y)) - exp(y)
D(D(f, "x"), "y")
## [1] 0</pre>
```

To compute the derivative at a specific point, we use eval (expr) eval(D(f, "x"), list(x=2, y=1)) ## [1] 79.58385

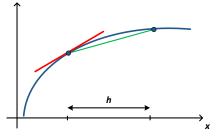
Finite Differences

- Numerical methods to approximate derivatives numerically
- ▶ Use a step size *h*, usually of order 10⁻⁶
 - Forward differences

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

Backward differences

$$f'(x) = \frac{f(x) - h}{h}$$



Centered differences

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Higher-Order Differences

Use the previous formulae to derive 2nd order central differences

$$f''(x) \approx \frac{f'(x+h) - f'(x)}{h} \\ \approx \frac{\frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h}}{h} \\ = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Finite Differences in R

Question

- Given $f(x) = \sin x$
- ▶ Set h <- 10e-6

▶ How to calculate the derivative at *x* = 2 with centered differences in R?

- (sin(2+h) sin(2-h)) / (2*h)
- ▶ (sin(2+h) sin(2-h)) / 2*h
- ▶ (sin(2+h) sin(2)) / (2*h)

Visit http://pingo.upb.de with code 1523

Gradient and Hessian Matrix

• Gradient of $f : \mathbb{R}^n \to \mathbb{R}^n$

$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\boldsymbol{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\boldsymbol{x}) \end{bmatrix}$$

► The second derivatives of *f* are called the Hessian (matrix)

$$H(\mathbf{x}) = \nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(\mathbf{x}) \end{bmatrix}$$

► Since the order of derivatives can be exchanged, the Hessian H(x is symmetric, i. e. H(x) = (H(x))^T

Numerical Analysis: Differentiation

Hessian Matrix in R

▶ optimHess(x, f, ...) approximates the Hessian matrix of f

```
f <- function(x) (x[1]^3*x[2]^2-x[2]^2+x[1])
optimHess(c(3,2), f, control=(ndeps=0.0001))
## [,1] [,2]
## [1,] 72 108
## [2,] 108 52</pre>
```

► Above example: forward differences to approximate the Hessian Matrix of f(x₁, x₂) at a given point (x₁, x₂) = (3,2) with a given step size h = 0.0001

Outline

- 1 Number Representations
- 2 Linear Algebra
- 3 Differentiation
- 4 Taylor Approximation
 - 5 Optimality Conditions
- 6 Wrap-Up

Taylor Series

► Taylor series approximates *f* around a point *x*₀ as a power series

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

- f must be infinitely differentiable
- If $x_0 = 0$ the series is also called Maclaurin series
- ► To obtain an approximation of *f*, cut off after order *n*

Taylor Approximation

Approximation of order *n* (blue) around $x_0 = 0$ for $f(x) = \sin x$ (in gray)

Taylor Approximation

Approximation of order *n* (blue) around $x_0 = 0$ for $f(x) = e^x$ (in gray)

Taylor Approximation

Approximation of order *n* (blue) around $x_0 = 0$ for $f(x) = \log x + 1$ (in gray)

Taylor Series

Question

• What is the Taylor series for $f(x) = \frac{1}{1-x}$ with $x_0 = 0$?

•
$$f(x) = \frac{1}{x} + 1 + x + x^2 + x^3 + \dots$$

•
$$f(x) = 1 + x + x^2 + x^3 + \dots$$

•
$$f(x) = x + x^2 + x^3 + \dots$$

Visit http://pingo.upb.de with code 1523

Question

• What is the Taylor series for $f(x) = e^x$ with $x_0 = 0$

•
$$f(x) = \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

•
$$f(x) = 1 + \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

•
$$f(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Visit http://pingo.upb.de with code 1523

Numerical Analysis: Taylor Approximation

Taylor Series

Question

• What is the Taylor series for $f(x) = \frac{1}{1-x}$ with $x_0 = 0$?

•
$$f(x) = \frac{1}{x} + 1 + x + x^2 + x^3 + \dots$$

•
$$f(x) = 1 + x + x^2 + x^3 + \dots$$

•
$$f(x) = x + x^2 + x^3 + \dots$$

Visit http://pingo.upb.de with code 1523

Question

• What is the Taylor series for $f(x) = e^x$ with $x_0 = 0$

•
$$f(x) = \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

•
$$f(x) = 1 + \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

•
$$f(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Visit http://pingo.upb.de with code 1523

Numerical Analysis: Taylor Approximation

Taylor Approximation with R

Load library pracma

```
library(pracma)
```

Calculate approximation up to degree 4 with taylor (f, x0, n)

```
f <- function(x) cos(x)
taylor.poly <- taylor(f, x0=0, n=4)
taylor.poly
## [1] 0.04166733 0.00000000 -0.50000000 0.00000000 1.00000000</pre>
```

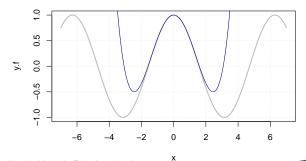
Evaluate Taylor approximation p at x with polyval (p, x)

```
polyval(taylor.poly, 0.1) # x = 0.1
## [1] 0.9950042
cos(0.1) # for comparison
## [1] 0.9950042
polyval(taylor.poly, 0.5) - cos(0.5)
## [1] 2.164622e-05
```

Taylor Approximation in R

Visualizing Taylor approximation

```
x <- seq(-7.0, 7.0, by=0.01)
y.f <- f(x)
y.taylor <- polyval(taylor.poly, x)
plot(x, y.f, type="l", col="gray", lwd=2, ylim=c(-1, +1))
lines(x, y.taylor, col="darkblue")
grid()</pre>
```



56

Outline

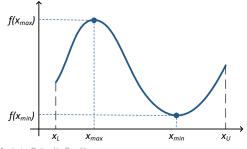
- 1 Number Representations
- 2 Linear Algebra
- 3 Differentiation
- 4 Taylor Approximation
- 5 Optimality Conditions
- 6 Wrap-Up

Extreme Value Theorem

Theorem

- ► Given: real-valued function f
- ► f continuous in the closed and bounded interval $[x_L, x_U]$
- Then f must attain a maximum and minimum at least once
- ► I.e. there exists $x_{\max}, x_{\min} \in [x_L, x_U]$ such that

 $f(x_{\max}) \ge f(x) \ge f(x_{\min})$ for all $x \in [x_L, x_U]$



Optimum

Definitions

► x^* is a local minimum if $x^* \in D$ and if there is a neighborhood $N(x^*)$, such that

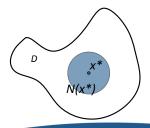
 $f(x^*) \leq f(x)$ for all $x \in N(x^*) \subseteq D$

x* is a strict local minimum if x* ∈ D and if there is a neighborhood N(x*), such that

 $f(x^*) < f(x)$ for all $x \in N(x^*) \subseteq D$ $\blacktriangleright x^*$ is a global minimum if $x^* \in D$ and

 $f(x^*) \leq f(x)$ for all $x \in D$

ightarrow What conditions need to be fulfilled for a minimum?



Optimality Condition

Conditions for a minimum x^*

1st order condition $f'(x^*) = 0 \rightarrow necessary$ 2nd order condition $f''(x^*) > 0 \rightarrow sufficient$

Interpretation through Taylor series

$$f(x+h) = f(x) + f'(x)h + O(h^{2})$$
Then

$$\begin{cases}f(x+h) - f(x) \ge 0\\f(x-h) - f(x) \ge 0\end{cases} \Rightarrow f'(x) = 0$$

$$f(x+h) - f(x) = \frac{1}{2}f''(x)h^{2} + O(h^{3}) > 0\\f(x-h) - f(x) = \frac{1}{2}f''(x)h^{2} + O(h^{3}) > 0\end{cases} \Rightarrow f''(x) > 0$$

Optimality Condition

Theorem (sufficient optimality condition)

Let *f* be twice continuously differentiable and let $\mathbf{x}^* \in \mathbb{R}^n$, if

1 First order condition

 $\nabla f(\mathbf{x}^*) = [0,\ldots,0]^T$

2 Second order condition

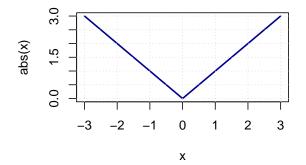
 $\nabla^2 f(\mathbf{x}^*)$ is positive definite

then \boldsymbol{x}^* is a strict local minimizer

Optimality Conditions

The previous theory does not cover all cases

• Imagine f(x) = |x|



- f(x) has a global minimum at $x^* = 0$
- ► Since *f* is not differentiable, the optimality conditions do not apply

Stationarity

Definition

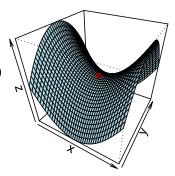
- ► Let *f* be continuously differentiable. A point $\mathbf{x}^* \in \mathbb{R}^n$ is stationary if $\nabla f(\mathbf{x}^*) = 0$
- x^* is called a saddle point if it is neither a local minimum or maximum

Examples

f(*x*) = −*x*² has only one stationary
 x^{*} = 0, since ∇*f*(*x*^{*}) = −2*x*^{*} = 0

•
$$f(x) = x^3$$
 has a saddle point at $x^* = 0$

► $f(x_1, x_2) = x_1^2 - x_2^2$ has a saddle point $\mathbf{x}^* = [0, 0]^T$



Stationary Points

Nature of x*	Definiteness of H	$\boldsymbol{x}^T H \boldsymbol{x}$	λ_i	Illustration
Minimum	positive definite	>0	> 0	
Valley	positive semi-definite	\geq 0	\geq 0	
Saddle point	indefinite	\neq 0	eq 0	-∲
Ridge	negative semi-definite	\leq 0	\leq 0	1
Maximum	negative definite	< 0	< 0	

Convexity

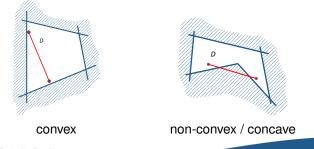
Definitions

• A domain $D \subseteq \mathbb{R}^n$ is convex if

 $\forall x_1, x_2 \in D \ \forall \alpha \in [0,1] \quad \alpha x_1 + (1-\alpha)x_2 \in D$

• A function $f: D \to \mathbb{R}$ is convex if

 $\forall x_1, x_2 \in D \ \forall \alpha \in [0,1] \quad f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha x_1 + (1-\alpha)x_2$



Global Optimum

- ► Convexity gives information about the curvature, thus stationary points
- Constraints of an optimization define the feasible set

 $D = \{ \boldsymbol{x} \in D \, \| \, g(\boldsymbol{x}) \leq 0, h(\boldsymbol{x}) = 0 \}$

which can be either convex or concave

 Global minima are usually difficult to find numerically, except for cases of convex optimization

Definition

An optimization problem is convex if both the objective function f and its feasible set are convex

Theorem

The solution of a convex optimization is also its global solution

Outline

- 1 Number Representations
- 2 Linear Algebra
- 3 Differentiation
- 4 Taylor Approximation
- 5 Optimality Conditions

6 Wrap-Up

Summary: Linear Algebra

Dot product	$\boldsymbol{a}\cdot\boldsymbol{b}=\boldsymbol{a}^{T}\boldsymbol{b}$
Norm	 x
Transpose	$A^{T} = \left[a_{ji}\right]_{ij}$
Identity matrix	$I_n = \text{diag}(1, \dots, 1) \in \mathbb{R}^{n \times n}$
Inverse	$A^{-1} \in \mathbb{R}^{n \times n}$ such that $AA^{-1} = I$
Pseudoinverse	$A^+ \in R^{m \times n}$ such that $AA^+ = I$
Determinant	det A
Eigenvalue, -vector	$Aoldsymbol{v}=\lambdaoldsymbol{v}$ for $oldsymbol{v} eq 0$
Positive definite	$\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} > 0$ for $\boldsymbol{x} \neq 0$

Summary: Numerical Analysis

Partial derivative $\frac{df}{dx_i}(\mathbf{x})$ Finite differencesNumerical approximations to derivativesGradient $\nabla f(\mathbf{x})$ Hessian $H(\mathbf{x}) = \nabla^2 f(\mathbf{x})$ Taylor series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$

Summary: Optimality Conditions

- ► Local minimum x^* if $f(x^*) \le f(x)$ for all $x \in N(x^*) \subseteq D$
- Global minimum if $f(x^*) \leq f(x)$ for all $x \in D$
- Sufficient conditions for a strict local optimizer

1 $\nabla f(\mathbf{x}^*) = 0$ (stationarity)

- **2** $\nabla^2 f(\mathbf{x}^*)$ is positive definite
- Convex optimization has a convex objective and a convex feasible set
- The minimum in convex optimization is always a global minimum

Summary: R Commands

```
digitsBase(...)
strtoi(...)
%*%
drop(A)
t.(A)
diag(n)
solve(A), ginv(A)
det (A)
eigen(A)
is.positive.definite(A),...
D(f, x)
eval(f, ...)
optimHess(...)
taylor(...), polyval(...)
```

Convert number from base 10 to another base Convert a number from any base to base 10 Dot product, matrix multiplication Deletes dimensions in A with only one value Transpose a matrix A Identity matrix of size $n \times n$ Inverse or pseudoinverse of a matrix A Determinant of A if existent Eigenvalues and eigenvectors of a matrix Tests if matrix A is positive definite, ... Derivative of a function f regarding xEvaluates an expression f at a specific point Approximate to Hessian matrix Taylor approximation