Instrumental Variable Regression

2013/07/17

Tobias Brandt Chair for Information Systems Research

Doctoral Workshop | Freiburg | July 2013

Linear Regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \qquad i = 1 \dots n$$

Gauss-Markov-Theorem:

OLS is Best Linear Unbiased Estimator (BLUE) iff error terms

- have zero mean: $E(\epsilon_i) = 0$
- are uncorrelated: $Cov(x, \epsilon) = 0$
- are homoscedastic: $Var(\epsilon_i) = \sigma^2 \quad \forall i$

Omitted Variable Bias

- True Model: $y_i = \beta_0 + \beta_1 x_i + \beta_2 r_i + \epsilon_i$ with $Cov(x, r) \neq 0$
- r_i is unobserved and $y_i = \widehat{\beta_0} + \widehat{\beta_1}x_i + \eta_i$ is estimated instead
- $\eta_i = \gamma r_i + \epsilon_i \Rightarrow Cov(x, \epsilon) \neq 0$ (Endogeneity)

Simultaneity

•
$$y_i = \beta_1 x_i + \beta_2 r_i + \epsilon_i$$
 and $r_i = \gamma_1 x_i + \gamma_2 y_i + \eta_i$

•
$$E(r_i\epsilon_i) = \frac{\gamma_2}{1-\beta_2\gamma_2}E(\epsilon_i\epsilon_i) \neq 0 \Rightarrow Cov(r,\epsilon) \neq 0$$
 (Endogeneity)

Instruments

Idea

- Assuming an endogeneity bias in $y_i = \beta_0 + \beta_1 x_i + \epsilon_i \dots$
- ... x_i can be "broken" into two parts one correlated and one not using an instrumental variable z_i
- Instrument only detects movements in x_i that are uncorrelated with ϵ_i

Validity

- A valid instrument must be
 - relevant: $Cov(z, x) \neq 0$
 - exogenous: $Cov(z, \epsilon) = 0$
- Cov(z, ε) = 0 cannot be tested (bias) ⇒ use common sense & economic theory
- $Cov(z, x) \neq 0$ can be tested by regressing $x_i = \gamma_0 + \gamma_1 z_i + \eta_i$ First Stage Regression

Two Stage Least Squares (TSLS)

First Stage Regression

• Compute values $\widehat{x}_i = \widehat{\gamma}_0 + \widehat{\gamma}_1 z_i$

Second Stage Regression

- Regress $y_i = \beta_0 + \beta_1 \hat{x}_i + \epsilon_i$
- IV estimator is not unbiased, but consistent (as sample size increases, bias disappears)
- Bias is larger for "weak" instruments (low explanatory power)

2

Example: Angrist & Krueger (1991)

Estimating return to education

- $ln(wage) = \beta_0 + \beta_1 schooling + \epsilon$
- Problem: "Able" people generally perform better in school and earn more money, but inherent ability cannot be observed (OVB)

Instrument: Quarter of Birth

- Mandatory schooling laws (e.g. enter school in September of the year they turn six, may drop out after 16th birthday)
- Q1 drops out after 9th grade, Q4 after 10th grade

Example: Angrist & Krueger (1991)

Problem: weak instrument

- F-statistics in 1st stage in some specifications less than 2 (target is 10)
- Despite large sample (360,000), TSLS shows same result when quarters are randomly assigned

Strong instruments

- Better results for specifications with large F-stat
- Estimated return is 8% per year of schooling

Example: Acemoglu et al. (2001)

Estimating impact of institutions on GDP

- $GDP = \beta_0 + \beta_1 APAE + \gamma X + \epsilon$ (APAE = Average Protection against Expropriation)
- Problem: Richer countries may prefer and can afford better institutions (Simultaneity)

Instrument: Colonial Settler Mortality

 settler mortality ⇒ settlements ⇒ early institutions ⇒ current institutions ⇒ current performance m

UNI FREIBURG

Results

- Strong instrument (25-35% R² in 1st stage)
- Shows significant impact of mortality on institution and of institutions on GDP

Assessment

- Overall, strong support for the importance of institutions
- Still problematic due to possible measurements errors

- IV tries to replicate a natural experiment
- IV is not a silver bullet to solve all endogeneity problems
- IV can provide additional support for hypotheses
- IV fundamentally relies on the strong instruments