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1 Introduction 1

Abstract
The first decade of the 21st century has been stricken by two tremendous financial

crises, the Dotcom bubble and the Financial Crises of 2007. Thus, identifying rational

bubbles is extremely relevant for investors to prevent high losses. This paper gives a

first outline for studying rational bubbles. It outlines two popular standard bubble

tests, the variance bound test by Shiller and the Diba and Grossman test. The former

is based on the present-value approach derived from fundamentals, the latter uses the

technique of cointegration. Our finding suggests the time series under investigation,

the Standard and Poor’s 500 composite index, is driven by rational bubbles.

1 Introduction

The financial world is often distressed by financial crises. Every financial meltdown comes

along with high losses for investors. To avoid potential profit setback, investors seek to identify

speculative bubbles and accurately timed cut backs of investments. The most recognized crises in

history of the Standard and Poor’s composite index are shown in Figure 1. The Panic of 1907

is highlighted at first, followed by the Great Depression in 1929. After the World War Two, the

Black Friday in 1987 is of historical interest. At the beginning of the 21st century, the Dotcom

bubble was highly discussed; today, the Financial Crisis of 2007 is still present in everyone’s mind.
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Figure 1: Monthly Standard and Poor’s 500 real price composite index from January 1871
until March 2015 and its most important crisis.

Defining and detecting bubbles is crucial and a lot of effort has been spend to solve this

problem. In recent literature there are several attempts to explain bubbles. Shiller [16] provides

the explanation,“by a bubble, some seem to mean any period when asset prices rise and then
fall”. Blanchard and Watson [1] specify a bubble as follows, “rationality of both behavior and of
expectations often does not imply that the price of an asset be equal to its fundamental value. In
other words, there can be rational deviations of the price from this value, rational bubbles”. In this

paper, we use the terminology of a rational bubble in regard to [1].
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The aim of this paper is to give an overview of the basic empirical test to identify rational

bubbles. By applying the variance bound test from Shiller [17] and the Diba and Grossman [3],

we answer the following research questions.

Research Question 1: Is the Standard and Poor’s composite index driven by rational bubbles?

Research Question 2: Does the real price of the Standard and Poor’s composite index and its
corresponding real dividend payments follow a mutually long-run equilibrium path?

Our finding suggest the S&P 500 is, indeed, driven by rational bubbles. Additionally, we could

not identify a long-run relationship between the real price of the S&P 500 and its corresponding

real dividend payments, which is an indicator for rational bubbles. Alltogether, both tests indicate

the existence of rational bubbles.

The rest of the paper is structured as follows. In Section 2, we give an overview of the methods

used to identify rational bubbles. In Section 3, we present the empirical results of the variance

bound test and the Diba and Grossman test. Finally, in Section 4, we critically discuss our main

findings and provide an outlook for further research.

2 Methods

In this section, we start with required properties of time series, which is crucial when implemting

the both tests. First, we present one property for a time series is stationary. Secong, the

cointegration properties are outlined, to identify potential long-run relationships of the two time

series in study. Afterwards, we empirical implement the Shiller test and the Diba and Grossman

test.

2.1 Required Properties

Working with time series models has special prerequisites in terms of properties of the time series

used. In our case, we need stationary time series. We pursue a more detailed approach, as we

will first present the terminology of a random-walk process with white noise error term. Second,

we explain the terminology of an integrated stochastic process and, third, define stationarity and

cointegration.

2.1.1 Stochastic Process

To better understand the properties, we start with some considerations about stochastic processes.

First, we assume that the current value of a variable Yt depends on its value from the preceding

period given by

yt = yt−1 + εt (1)

with the white noise term εt
iid∼ N(0,σ2

ε ). Thus, the current price may be written as

yt = y0 +
t

∑
i=1

εt . (2)
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The time series depends on its starting value y0 and its aggregated white noise process, the

stochastic trend. If time series follow a deterministic time trend, then a representation of the

process yt is

yt = y0 +µ0t +
t

∑
i=1

εt . (3)

Regarding this notation , the process yt follows two trends, a deterministic time trend µ0t, which

increases over time t and a stochastic trend ∑
t
i=1 εt . This representation is useful, since it is

important to distinguish between trend-stationary processes and non-stationary processes [4].

2.1.2 Stationarity

In a nutshell, stationary time series are charactrize by a constant expected value of a stochastic

process yt and a constant variance V (yt) at every point in time. A formal definition of stationarity

is given in [11].

A stochastic process {yt}, is called stationary if

E (yt) = µ ∀t ∈ T, (4)

E [(yt −µy)(yt−h−µy)] = γh ∀t ∈ T and h ∈ N s.t. t−h ∈ T. (5)

Econometric time series are often non-stationary, due to, among other things, seasonal or

technological changes [8]. Additionally, time series may follow a trend-stationary process. Trend-

stationary time series are stationary when accounting for a time trend. One common example is

the gross domestic product (GDP). It is possible to transform a non-stationary time series into

a stationary time series by using the first-difference ∆y = yt − yt−1. Taking the first-difference

is often sufficient to translate the non-stationary time series into stationary time series. But

exceptions exist, for which one has to use higher differences. In general, one can say a time series

yt is integrated of order d, yt ∼ I(d), if it must be differenced d-times to achieve a stationary time

series, ∆dy∼ I(0) [4].

2.2 Unit Root Test

One can conduct the Dickey Fuller test to check for stationary time series [11]. As mentioned

before, it is highly relevant to distinguish between stationary and trend-stationary time series.

Several testing specifications are possible. Note, we specified a stochastic process as yt = yt−1 + εt .

Such a unit root process allows us to run the following test procedure, in order to test for unit

root via

yt = Φyt−1 + εt (6)

⇔ yt −Φyt−1 = εt (7)

⇒ ∆yt = εt with Φ = 1. (8)

From Equation (8) one can derive the hypothesis test

∆yt = ϕyt−1 + εt , (9)
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with the null hypothesis H0: ϕ = 0 and alternative hypothesis H1: ϕ > 0. Under the null hypothesis,

the process yt is non-stationary.

Since testing for unit root is always the beginning of a comprehensive data analysis, one should

avoid potential misspecification of the time series. Consequently, it is appropriate to first check

the graphs of each time series and to decide afterwards whether or not to estimate the Dickey

Fuller test with a constant, a linear time trend or both. This might result in testing the following

stochastic processes, a random walk with a drift,

∆yt = µ0 +ϕyt−1 + εt , (10)

or a random walk with drift and linear trend

∆yt = µ0 +µ1t +ϕyt−1 + εt , (11)

to be stationary.

Sometimes, it makes sense to include lags to avoid autocorrelation; then, the augmented

Dickey Fuller (ADF) test is the right choice. The ADF test additionally includes autoregressive

differenced terms for autocorrelation,

∆yt = µ +ϕyt−1 +
p

∑
i=2

βi∆yt−i+1 + εt , (12)

with p denoted as lags. However, the critical values for the augmented Dickey Fuller test do not

follow a t-distribution, but valid critical values can be found in [12].

2.3 Cointegration

Cointegration refers to the subject of identifying a long-run relationship between two (or more)

explanatory variables. Generally speaking, one wants to find an equilibrium relationship. For

instance, values of time series will always fall back on track, after a short-time deviation from the

long-run equilibrium value. In accordance to [7] one explanation of cointegration is as follows.

Assume two variables x and y are integrated of order one, x∼ I(1) and y∼ I(1), then x and y are

cointegrated, if a stationary linear combination, y−β1x−β0 ∼ I(0), with β0,β1 ∈ R can be found.

Thus, for cointegrated I(0)-variables y−β2x∼ I(0) hold, such that the relationship

yt = β0 +β1xt +ut , (13)

with ut ∼ I(0) or ut white noise exists.

2.3.1 The Engle and Granger Methodology

The Engle and Granger method [5] is a two-part procedure for two variables to identify a

potential cointegration relationship. First, the variables are tested to be integrated of the same

order. Second, if they are integrated of the same order, whether the linear combination of both

variables are stationary or not. Because the two parts including several steps, we give a brief

implementation guidance.
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• Step 1: Test all variables for their order of integration using the Dickey Fuller test or the

augmented Dickey Fuller test

• Step 2: If all variables are integrated of the same order, continue with estimating the

long-run relationship

yt = β0 +β1xt + εt , (14)

xt = β0 +β1yt + εt . (15)

Furthermore, the fitted residuals ε̂t have to be checked for unit root via

∆ε̂t = d1ε̂t−1 + et , (16)

with the null hypothesis, H0 : d1 = 0. If the null cannot be rejected, the residuals series is

non-stationary and xt and yt are not cointegrated.

• Step 3: If the variables are cointegrated, a general error correction model (ECM) can be

estimated to find out about the long-run behavior of the system. The ECM system is

∆yt = ψ0 + γ1ẑt−1 +
K

∑
i=1

ψ1,i∆xt−i +
K

∑
i=1

ψ2,i∆yt−i + ε1,t , (17)

∆xt = ξ0 + γ2ẑt−1 +
K

∑
i=1

ξ1,i∆xt−i +
K

∑
i=1

ξ2,i∆yt−i + ε2,t , (18)

where ẑt is the error from the regression in Equation (16) and ε1,t and ε2,t are the white

noise processes. The ECM representation in Equation (17) declares the changes in yt

to its past changes, the past changes in xt , and the previous period error ẑt−1 from the

long-run equilibrium. For the cointegration analysis, the speed of adjustment coefficient

γ1 respectively γ2 is of most interest, given that the coefficient determines the long-run

adjustment. The coefficient should have a negative sign. If it does not have a negative sign,

the system would not reach its long-run equilibrium path [14]. If the adjustment coefficient

is not significantly different from zero, the variables do not respond to deviations from its

long-run equilibrium path.

• Step 4: Asses model adequacy and perform diagnostics.

2.4 Testing for Rational Bubbles

In this section, we present two traditional tests to identify rational bubbles. First, we start with

the variance bounds test for equity prices by [17], which is based on the classical present-value

approach. Second, we present the Diba and Grossman [3] test to identify rational bubbles, which

is based on a cointegration analysis.

2.4.1 Variance Bounds Test

Variance Bounds tests for equity prices goes back to [17] and [10]. The test was first used to

test for the validity of the present-value approach [17] and later to identify rational bubbles [1,

20]. The Variance Bound test explain the existence of rational bubbles in the deviation of the
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real equity price from its expected equity price. The expected equity price is extrapolate from

the fundamental value, hereafter present-value, of the asset. In detail, the present-value can be

derived from expected future dividend payments. The underlying concept rest on the asssumption

of equality between the real price of an asset and the assets expected future payments. By way of

finding out about rational bubbles, one can calculate an upper bound of the variance based on

fundamentals. Afterwards, this bound can be compared to the real variance of the underlying

asset. Any violation of estimated bounds can be seen as the existence of rational bubbles [1, 20].

Now, we turn to theoretical considerations of the variance bounds test, where we follow the

explanation of [6]. Concerning the present-value approach, the price of an asset Pt at time t can

be calculated via

Pt =
∞

∑
i=1

(
1

1+ r

)i

Et (dt+i) , (19)

with i is the future period, r is the discount factor, and Et (dt+i) is the expected future dividend at

time t + i. Thus, the ex post rational price is

P∗t =
∞

∑
i=1

(
1

1+ r

)i

dt+i. (20)

Assuming rational expectations, the difference between actual and expected dividends is a

non-forecastable variable ε, with E (ε) = 0. Thus, the price can be write as

P∗t =
∞

∑
i=1

(
1

1+ r

)i

Et [dt+i + εi] = Pt +
∞

∑
i=1

(
1

1+ r

)i

εt+i. (21)

The upper bound on the variance can be found, if one considers the difference εt is uncorrelated

with all information at time t. Thus, the variance of P∗t can be written as

V (P∗t ) =V (Pt)+ϕV (εt)︸ ︷︷ ︸
>V (Pt)

, where ϕ =

( 1
1+r

)2

1−
( 1

1+r

)2 . (22)

As mentioned in the beginning, a violation of this bound implies the price of the underlying asset

cannot follow Equation (19), which may then be a result of existing bubbles [1, 20].

2.4.2 Diba and Grossman

Identifying rational bubbles through the fundamental price of an asset is discussed controversially

in literature [e.g. 9]. As a consequence, [3] developed an approach to identify bubbles based on

equilibrium theory. Diba and Grossman [3] suppose the existence of an equilibrium relationship

between the stock price and the development of the dividends paid for the underlying asset

indicates no rational bubbles. They suppose the fundamental value of the stock price similar to

the present-value approach but with a fundamental factor unobservable to the econometrician

[6]. The fundamental value of the stock price in the model is

P f
t =

∞

∑
i=1

(
1

1+ r

)i

Et (dt+i +ut+i) , (23)
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where i is the future time period, r is the discount factor, Et (dt+i +ut+i) is the expected dividend

plus the unobserved fundamental factor ut+i.

If one assume the same order of integration for future dividends dt+i and the unobservable

factor ut+i, the fundamental value P f
t and the future dividends dt+1 should have the same level of

integration [15]. Thus, based on [3], [15] conclude with the following bubble test.

• A rational bubble does not exist, if dividends as well as the stock price are stationary after

the n-th difference and both are cointegrated.

• A rational bubble exists, if dividends as well as the stock price are non-stationary after the

same n-th difference.

• A rational bubble exists, if dividends as well as the stock price are stationary after the n-th

difference, but both are not cointegrated.

If a cointegration relationship exists, the ECM of the Engle and Granger method can be estimated

to find out about the long-run behavior of the system.

3 Results

In this section, we apply Shiller’s Variance Bound test and the Diba & Grossman test to real data.

First, we present a detailed description of the data. Subsequently, we perform some diagnostic

test and finally, we conclude with our results.

3.1 Data

As data source we use the Standard & Poor’s 500 Composite Index from January 1871 until March

2015 and its dividend payments during this period. The data is provided by Robert Shiller’s

website [19]. The data set includes monthly time series of the real price of the S&P 500 and its

real dividend payments. Additionally, Shiller reports the long-run interest rate for each month.

Many researcher are using the same data source for their empirical analysis which can be seen as

an advantage. Consequently, one can easily compare different approaches and time periods. For

a more detailed description of the data, see [18].

Table 1 presents the descriptive statistics. Unfortunately, the data does not seem to be perfectly

normally distributed due to skewness and kurtosis. Normally distributed time series should have

a skewness of 0 and a kurtosis of 3. Nevertheless, the values do not deviate to much and we will

continue with our estimation.

Variable Mean Median Min. Max. Std. Dev. Skewness Kurtosis

Real price 445.5 236.1 64.2 2104 453.95 1.84 2.51
Real dividend 13.76 11.79 4.731 40.99 6.84 1.00 0.79

Table 1: Descriptive statistics.
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3.2 Findings of the Variance Bound Test

Figure 2 shows the Standard and Poor’s (real detrended) monthly composite price index from

January 1871 until March 2015 and its corresponding detrended perfect foresight series.
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Figure 2: Monthly Standard and Poor’s 500 real detrended price composite index from
January 1871 until March 2015 (solid line) and its corresponding detrended perfect fore-
sight series (dashed line).

The detrended perfect foresight series

p∗t = γ
(

p∗t+1 +dt+1
)
, with γ =

1+g
1+ r

(24)

implied by Equation (20) is calculated recursively [17]. The constant growth rate g is the average

growth rate of the real price over the entire sample size and the discount factor r is the average

long-run interest rate over the entire sample size. In line with [17], we use the terminal value pT

as starting point which is the average detrended price

pT =
1
T

T

∑
t=1

pt

1+g
, (25)

over the entire sample size with T is the total number of month. The standard deviation of

the detrended real price time series pt is σpt = 452.72 and the standard deviation of the perfect

foresight series p∗t is σp∗t = 234.22. The corresponding variance is, Vpt = 204,959.40 respectively

Vp∗t = 54,858.33, indicating the variance of the detrended real price is approximately four-times

higher then the perfect foresight price. This result corresponds with Shiller’s findings [17].

These findings indicates a violation of the variance bounds from Equation (22), hence there might

be rational bubbles and investors should be aware, when taking investments in the S&P 500.

3.3 Findings of the Diba and Grossman Test

Next we present the cointegration analysis for the Diba and Grossman test. As mentioned in

Section 2, we start with testing the time series for stationarity using the augmented Dickey

Fuller (ADF) test. Before we apply the ADF test, we perform several information criterion tests in

order to learn about the optimal length of lags. Subsequently, the Engle and Granger method is
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applied to find out about the cointegration relationships of the two underlying time series.

At the beginning, we need to decide upon the number of lags. To determine the optimal lag

structure, we perform the Akaike Information Criterion (AIC), Schwarz Information Criterion (SC),

Hannan-Quinn Information Criterion (HQ), and Final Prediction Error (FPE). Our findings suggest

a lag length of three, seven or nine depending on the information criteria. Since there is not just

one method but different views on how to determine lag length, we also perform the Portmanteau

test for autocorrelation. The test helps us to set the optimal lag length [8]. None of the lag length

indicating significantly improvements in the sense of less autocorrelation compared to the other.

In the sense of degrees of freedom and model complexity it seems to be appropriate to choose

the lowest lag length of three.

Determenistic Component AIC(n) HQ(n) SC(n) FPE(n)

none 9 7 3 9
constant 9 7 3 9

trend 9 7 3 9
both 9 7 3 9

Table 2: Information criterion tests with a maximal lag length of 12.

In the next step, we perform the ADF test. Figure 3 shows the time series. On the left hand side,

the monthly data of the Standard and Poor’s 500 real price composite index from January 1871

until March 2015 is shown and, on the right hand side, the corresponding dividend payments are

shown during the same time period. From a first look, we can conclude that the real dividend

payments follow a drift and the real price curve follow a drift and a trend. Therefore, we perform

the ADF test with three lags and include a drift and a trend for the real price time series and only

include a drift term, when testing the real dividend time series to be stationary.
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Figure 3: Monthly Standard and Poor’s 500 real price composite index from January 1871
until March 2015 and its dividend payments in this time.

The results from the ADF tests are shown in Table 3. From Table 3, we can conclude that

both time series are integrated of order one. This implies the time series are non-stationary in

levels, but stationary in first differences. Hence, we continue with the next step and apply the

cointegration test by Engle and Granger.
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Variable Deterministic Trend Lags Test Value Critical Values

1% 5% 10%

p constant, trend 3 0.00 −3.96 −3.41 −3.12
∆p constant,trend 3 −18.22 −3.96 −3.41 −3.12
d constant 3 −0.46 −3.43 −2.86 −2.57
∆d constant 3 −10.67 −3.43 −2.86 −2.57

Table 3: Augmented Dickey-Fuller test for stationary indicating that all time series are
stationary in first difference. Conducting further specifications by varying the lag length
indicate the same results.

Performing Step 2 of the Engle and Granger method yields to the following two long-run

relationships,

pt =−364.387+58.842dt + εt , with ε̂t = 0.997ε̂t−1 + et (26)

dt = 7.813+0.013pt + εt , with ε̂t = 0.999ε̂t−1 + et (27)

with highly significant p-values. Applying the ADF test to the residuals leads to the result that

the residual time series is non-stationary and thus pt and dt are not cointegrated. However, the

ADF test sometimes does not reject the null hypothesis (non-stationary) even if the time series is

stationary. Therefore, in Figure 4 the residuals are shown, to find out about stationary.

−500

0

500

1000

1880 1900 1920 1940 1960 1980 2000 2020
year

R
es

id
ua

ls
 o

f e
ps

ilo
n 

p

−10

−5

0

5

10

1880 1900 1920 1940 1960 1980 2000 2020
year

R
es

id
ua

ls
 o

f e
ps

ilo
n 

d

Figure 4: Left: Residuals of the Equation (26); right: Residuals of the Equation (27).

Strong fluctuation after the 1990s may explain why the residuals are non-stationary. This

is also the result which the implementation of the Engle and Granger method in the software

package R suggest. When running the given procedure in the egcm-package [13] find “The series
seem cointegrated but the residuals are not AR(1)”. We proceed with further steps of the Engle

and Granger method and do error correction introduced in Section 2.3.1. We perform the error

correction model with three lags, such that the general representation of Equations (17) and (18)

becomes,

∆pt = ψ0 + γ1ẑt−1 +
3

∑
i=1

ψ1,i∆dt−i +
3

∑
i=1

ψ2,i∆pt−i + ε1,t , (28)

∆dt = ξ0 + γ2ẑt−1 +
3

∑
i=1

ξ1,i∆pt−i +
3

∑
i=1

ξ2,i∆dt−i + ε2,t . (29)

The results of the error correction model estimation are presented in Table 4 and Table 5.
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Estimate Std. Error t-value Pr(>|t|)

ψ0 0.7255 0.5378 1.35 0.1775
γ1 -0.0019 0.0026 -0.73 0.4655
∆p−1 0.2206 0.0241 9.16 0.0000 ***
∆d−1 -11.8549 4.5062 -2.63 0.0086 **
∆p−2 -0.0444 0.0246 -1.81 0.0705 .
∆d−2 6.4262 5.1399 1.25 0.2114
∆p−3 0.0541 0.0240 2.25 0.0243 *
∆d−3 13.1481 4.5275 2.90 0.0037 **
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 22.06 on 1719 degrees of freedom

Multiple R-squared: 0.05947, Adjusted R-squared: 0.05564

F-statistic: 15.53 on 7 and 1719 DF, p-value: < 2.2e-16

Table 4: Error correction model of pt ∼ dt .

Estimate Std. Error t-value Pr(>|t|)

ξ0 0.0049 0.0029 1.70 0.0886 .
γ2 0.0009 0.0009 1.01 0.3125
∆p−1 0.0001 0.0001 0.65 0.5177
∆d−1 0.5586 0.0241 23.22 0.0000 ***
∆p−2 0.0001 0.0001 0.58 0.5646
∆d−2 0.1439 0.0275 5.24 0.0000 ***
∆p−3 -0.0001 0.0001 -0.46 0.6474
∆d−3 0.0313 0.0241 1.30 0.1946
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1179 on 1719 degrees of freedom

Multiple R-squared: 0.4715, Adjusted R-squared: 0.4693

F-statistic: 219.1 on 7 and 1719 DF, p-value: < 2.2e-16

Table 5: Error correction model of dt ∼ pt .

We conclude that the speed of the adjustment coefficient is in both model specifications not

different from zero and thus the system does not respond to long-run deviations. According

to the outcome of Equations (26) and (27), this outcome is not a surprise. First, we could not

clearly specify stationary residuals in Step 2 and as a consequence the ECM estimation stood on

weak grounds since the very beginning. Second, a potential estimation error in Equations (26)

and (27) transfers to the ECM which results in an even greater error. Finally, we could not find a

definite cointegration relationship between the real price pt and the dividend payments dt . These

findings indicate the existence of rational bubbles. In summary, both tests point to the existence

of rational bubbles.

3.4 Discussion

This section discusses our results. We applied the variance bound test introduced by Shiller and

the Diba and Grossman test to identify whether or not the S&P500 is driven by rational bubbles.

The variance bound test shows the variance of the real price fluctuates four-times stronger than

the expected price, estimated based on the present-value approach. Hence, we find approving
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evidence for our research question 1. The cointegration analysis could not indicate a long-run

relationship between the real price of the S&P 500 and its corresponding dividend payments.

According to the Diba and Grossman test, this may serve as evidence for the existence of rational

bubbles. We may conclude that we cannot confirm research question 2. This result is in line with

the result from the variance bound test, which shows evidence for rational bubbles.

However, these results should be treated with caution. First of all, as noticed in [6], any

study that identifies a rational bubble is most likely counterbalanced by another study that does

not identify a rational bubble as it keeps less strict assumptions on fundamentals. Moreover,

the Schiller and the Diba and Grossman test, can only identify rational bubbles, but ignores

behavioral aspects. Literature has produced a large body of research focussing on behavioral

models. These models include behavioral indicators to detect irrational bubbles. Last but not

least, the standard test implemented here, does not discover the presence of breaking points in a

rational bubble. For this purpose, [2] developed a test to identify structural breaks, by testing the

time series against a change in the order of integration for a particular point in time.

In sum, rational bubbles appear to exist and may have dire consequences thus investors should

be aware of rational bubbles. Nevertheless, further investigation of rational bubbles for the

S&P500 may be worthwhile, especially to find out about the exact beginning and ending of

bubbles.

4 Conclusion and Outlook

Identifying rational bubbles is extremely relevant for investors to prevent high losses. The

variance bound test by Shiller and the Diba and Grossman test is a good starting point to find

out about rational bubbles in the underlying market. This paper gives a brief insight into the

theoretical background of the two tests and tested the S&P 500 for the existence of rational

bubbles.

Our findings suggest the S&P 500 is clearly driven by rational bubbles. The variance bound

test, based on the present-value approach, shows movements of the S&P 500 clearly exceed the

variance bounds given in the test. The cointegration analysis indicates no long-run equilibrium

path for the real price of the S&P 500 and its corresponding dividend payments. Hence, the Diba

and Grossman test suggest the same results as the variance bound test.

For future work, several research directions are of high interest. First, one might include

other test procedures as mentioned in this paper. Second, beside knowledge on the existence

of rational bubbles one should acquire knowledge on the break point of the bubbles. For such

reason, one might investigate the time series of a structural change from stationary time series

to non-stationary time series. Third, based on behavioral research, one might account for an

information bias and incorporate news sentiment.
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