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1 Introduction

Almost immediately after the invention of computers, the simulation of random processes

began. They were, at first playfully, called Monte Carlo methods, because of the most famous

casinos there. Soon after, Markov chain Monte Carlo methods (MCMC) were developed in

connection with the development of the atomic bomb. The physicist Metropolis used them to

calculate thermal equilibria. They were soon used in especially physics and chemistry. With

the generalization of the Metropolis algorithm by Hastings (1970), it was more widely used.

Geman and Geman (1984) introduced simultaneously an algorithm which is a special case of the

Metropolis-Hastings algorithm called Gibbs sampling. The Gibbs sampler simulates the posterior

distribution and hence enables full Bayesian inference. In general, one can say that MCMC

methods are a way of drawing posterior samples from a target distribution, without having to

know the Bayesian normalization.

This paper first introduces Markov chains and their characteristics in Section 2, it then explains

Markov chain Monte-Carlo methods in form of the Metropolis-Hastings algorithm in Section 3

and, more specifically, Gibbs sampling in Section 4. In Section 5, we implement Gibbs sampling

in the statistical software R.

2 Markov Chains

The general idea of Markov chain Monte Carlo methods is that instead of unrelated points, we

sample a Markov chain. To do so, we have to understand Markov chains which are thus explained

in this section.

Definition 2.1 Two variables x and y are conditionally independent given z, thus x ⊥⊥ y|z, iff the
conditional joint can be written as a product of conditional marginals (Murphy 2012), i. e.,

x⊥⊥ y|z⇐⇒ p(x,y|z) = p(x|z)p(y|z)

.

Definition 2.2 A sequence of random variables x1,x2, . . . in discrete time on the state space E, is a
Markov chain for n = 1,2, . . . if

xn+1 ⊥⊥ (x0,x1, . . . ,xn−1)|xn.

The above definition indicates that the future state xn+1 is independent of all previous states,

given the present state. This is also referred to as the fundamental Markov property (Rønn-Nielsen

and Hansen 2014).

So, Markov chains are stochastic processes that generally do not have any memory. But, if the

Markov chain has a certain memory m and the future process is thus not entirely independent of

the past states, we can create Markov chains of higher order. Where a Markov chain of order m

represents a chain that depends on the past m states.
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Definition 2.3 A stochastic process x = xn is a Markov chain of order m ∀i0, i1, . . . , it+1,n≥ p+1 iff

p(xn+1 = in+1|xn = in, . . . ,xn−m+1 = in−m+1, . . . ,x0 = i0) = p(xn+1 = in+1|xn = in, . . . ,xn−m+1 = in−m+1).

In Figure 1 we can see a Markov chain of first-order, which means that the future state is only

dependent on the current state xn and we can see a second-order Markov chain, where the future

state xn+1 is dependent on the state xn−1.

X1 X2 X3 X4

(a) A first-order Markov Chain.

X1 X2 X3 X4

(b) A second-order Markov Chain.

Figure 1: The time dependences of a first-order and a second-order Markov chain, where
arrows indicate the depenedencies.

Transition Probability

The transition probabilities of a Markov chain, give the probability of the chain moving from

one state to another. The visualization of the transition matrix T is given in Figure 2. Those

probabilities are mathematically defined by

Tn(xn,xn+1)≡ p(xn+1|xn).

If all transition probabilities Tn = T , the Markov chain is said to be homogeneous with respect to

time.

x2

x1 x3

1/2

1/2

1/2

1/2

1/2

1/2

Figure 2: Visualization of the transition probabilities in a Markov chain.
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In the following, we will restrict our analysis to homogeneous Markov chains. Since the transitions

Tn are a probability distribution, we may write

Tn ≥ 0,

∑
j∈E

Ti j = 1,

where i is the current state in n and j is the state in n+1. The resulting transition matrix T is

then a stochastic matrix (Beyn et al. 2014), where the element ti j describes the probability of

moving from i to j in one step. If we want to consider a transition over two steps from n to n+2,

we use the so-called Chapman-Kolmogorov equation (Beyn et al. 2014) given by

p(xn+2) = ∑
xn+1

p(xn+1|xn)p(xn+2|xn+1),

thus the sum over the transition probability from state n to state n+ 1 times the transition

probability from state n+ 1 to state n+ 2. We can give the transition matrix from Figure 2 in

matrix notation by

T =

0.5 0.5 0

0 0.5 0.5

0 0.5 0.5

 .

Here the chain moves with probability 1/2 from state one to state two in one step and returns to

that state in two moves with probability 1/2 ·1/2 = 1/4. The second and third state are persistent.
A state is persistent or recurrent if we have a probability that we will return to this state. Whereas

the first state is transient, which means it has a non-zero probability that we are not going to that

state again.

Stationarity

Another important characterization of Markov chains is that of stationarity. A Markov chain is

stationary or in an equilibrium if each step in the chain leaves the marginal probability for a

particular variable unchanged, i. e.

p(xn+1) = ∑
xn

p(xn+1|xn)p(xn).

Therefore, we can write a stationary distribution π on the state space E as

π
t = π

tT .

Thus, all the xn are identically distributed, but generally not independent. But, the existence of a

stationary distribution does not imply a convergence of the chain to that distribution.
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Reversibility – Detailed Balance

A sufficient condition for invariance or stationarity is detailed balance. A Markov chain is said to

have detailed balance if the probability of moving from x1 to x2 is the same as the probability of

moving from x2 to x1

π(x1)p(x2|x1) = π(x2)p(x1|x2).

If detailed balance holds and the chain is at stationarity, then the time-reversal of the chain and

the chain itself are the same. This is called reversibility of a chain with respect to π.

Ergodicity

If a Markov chain is ergodic, we can reach every state starting from any other state in a finite

number of steps and, for n→ ∞, we will reach the stationary distribution π(x) (Bishop 2006).

Formally, it follows for any function f : E→ R and any initial distribution π0 that

lim
n→∞

1
n

n

∑
k=1

f (xk) = ∑
i∈E

f (i)π(i)

Speed and Accuracy

An ongoing discussion between several researchers concerns the so-called burn-in phase of a

Markov chain. Some researchers argue that samples we draw before the chain has reached its

stationary distribution are not from the target distribution π. One should thus discard those

samples as they can lead to wrong conclusions (Murphy 2012). Others, argue that you may easily

discard to many samples and also make wrong conclusions. If discarding some of the samples

makes sense depends on how close the starting point is to the target distribution. As we most of

the time do not know this, trial and error seems inevitable.

The amount of time it takes a Markov chain to converge to the stationary distribution and forget

its initial state is called mixing time. The mixing time τ of a chain is defined as the maximum

mixing time τε over all initial states x0 which is defined as

τ = maxτε(x0)≡min{t : ||δx0(x)T
t −π||1 ≤ ε},

where δx0(x) is the distribution with all its mass in state x0 and T is the transition matrix.

Therefore, δx0(x)T
T

is the distribution after t steps.

3 Metropolis Hastings Algorithm

The Gibbs sampler, which we discuss in Section 4, is considered a special case of the Metropolis-

Hastings algorithm. Thus, we introduce the more general algorithm in this section.

The basic idea behind the Metropolis-Hastings algorithm includes the proposal of a move from

our current state xn to the next state xn+1 with a probability distribution q, which we call the
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proposal distribution. We can choose the proposal freely and would get an independence sampler
if we choose the new state to be independent from the current state; thus fulfilling

q(xn+1|xn) = q(xn+1).

After having proposed a move to the next state, we decide whether to accept this proposal and

go to the new state xn+1, or reject the proposal stay in state xn and repeat the sample. We base

this decision on a formula which helps as to ensure that we spent time in each state proportional

to the target distribution π(x). For a symmetric proposal q(xn+1|xn) = q(xn|xn+1), which means

that our probability distribution is the same regardless of the way we take, from state n to state

n+1 or the other way round, is given with an acceptance probability r of

r = min
(

1,
π(xn+1)

π(xn)

)
.

In the case of the proposal being asymmetric, we need a correction to take care of the proposal

distribution favouring specific states. Our acceptance probability is then given by (Murphy 2012)

r = min(1,α)

α =
π(xn+1)q(xn|xn+1)

π(xn)q(xn+1|xn)
=

π(xn)q(xn+1|xn)

π(xn+1)q(xn|xn+1)
,

where α is called the acceptance rate.

We can see that one of the most important tasks here is the choice of the proposal distribution. Our

proposal distribution is valid given the target distribution π, if it gives a non-zero probability of

moving to the states that have non-zero probability in the target (Murphy 2012). The advantage

of the next algorithm we discuss is, that we do not need to choose the proposal distribution.

4 Gibbs Sampling

As stated above, the Gibbs sampler can be seen as a special case of the Metropolis-Hastings

algorithm. We wish to sample from p(x) = p(x1, . . . ,xn) and have chosen an initial state for the

Markov chain. In this case, we want to sample each variable alternately, dependent on all other

variables in the distribution (Bishop 2006), thus sampling the full conditional for variable i

p(xi|x−i),

where x−i denotes all x without i. We could also look at it as if we drill through the full distribution

sampling only along one coordinate direction in turns.

Let us take a look at a simple example for a distribution with 3 variables p(x1,x2,x3). At step t we

have x1
t ,x2

t ,x3
t , we now sample

Step 1: x1
t+1 ∼ p(x1|x2

t ,x3
t),

Step 2: x2
t+1 ∼ p(x2|x1

t+1,x3
t),

Step 3: x3
t+1 ∼ p(x3|x1

t+1,x2
t+1),
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which we could easily generalize for more variables (Murphy 2012).

We said before Gibbs sampling has the advantage that we do not need to specify a proposal

distribution. This results from using the full conditional without changing x−i. We can show that

the Metropolis-Hastings algorithm now has an acceptance rate α of 100 %. For the purpose of a

clear representation, we use xn = x and xn+1 = x′ in the following

α =
p(x′)q(x|x′)
p(x)q(x′|x)

=
p(x′i|x′−i)p(x′−i)p(xi|x′−i)

p(xi|x−i)p(x−i)p(x′i|x−i)
,

exploiting the facts

x′−i = x−i,

and

q(x′|x) = p(x′i|x−i).

Then, we get

α =
p(x′i|x−i)p(x−i)p(xi|x−i)

p(xi|x−i)p(x−i)p(x′i|x−i)
= 1.

A problem that occurs with Gibbs sampling concerns its efficiency. If the probability mass, thus

the part where the density is concentrated, of the distribution is in a lower dimensional manifold

than the dimensional space (Figure 3), then considering all dimensions alternately is not efficient.

As going into the dimensions where no probability mass is, gives us no information. This is mostly

the case if some of the variables are tightly coupled. Faster computation can thus be achieved if

one finds an intrinsic dimension.

x1

x2

Figure 3: Visualization of the Gibbs samplers problem if the probability is defined on a
lower dimensional manifold. In this example we see that the probability mass is focused
on a one-dimensional line, while we have a two-dimensional state space.

Another problem is that Gibbs sampling can be slow as it only updates one parameter at a

time and we may take time to move to another state if there are high correlations between the

variables. An alternative that can help with those correlations is blocked Gibbs sampling. Instead

of sampling each parameter, we group the highly correlated parameters and sample those groups

block-wise. This helps us to make larger steps through the state space and reach our equilibrium.
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5 Application of Gibbs Sampling in R

We now have explained the theoretical foundations of Gibbs sampling. This section gives an

introduction to the implementation in the statistical software R. We use the code published

by Darren Wilkinson1 and the package gibbs.met by Li (2012). In our example we sample a

bivariate normal distribution with n = 1000 and a correlation of ρ = 0.75.

First, we have a look at Wilkinson’s code. Here, we define a function, where we input the

parameters n and ρ . We create a 2×2 matrix into which we sample alternately the variables for x

and y, always dependent on our previously sampled variables. Afterwards we test our function

for our example.

gibbs <- function (n, rho) {
mat <- matrix (ncol = 2, nrow = n)
x <- 0
y <- 0

5 mat [1, ] <- c(x, y)
for (i in 2:n) {

x <- rnorm (1, rho * y, sqrt (1 - rho ^2))
y <- rnorm (1, rho * x, sqrt (1 - rho ^2))
mat[i, ] <- c(x, y)

10 }
mat

}

bvn <- gibbs (10000 ,0.75)

For the package we first define the probability distribution function.

log_pdf_ mnormal <- function (x, mu , A)
{

0.5 * ←↩
(- length (mu)*log (2*pi)+sum(log(svd(A)$d))-sum(t(A*(x-mu))*(x-mu)) ←↩
)

}

Where mu is the mean vector and A is the inverse covariance matrix, with $\rho$ on the secondary

diagonal, of the multivariate normal distribution. The main function used for the sampling

is gibbs_met, for which we define the matrix A. The function additionally uses a metropolis

acceptance step.

require {gibbs.met}
A <- solve( matrix (c(1 ,0.75 ,0.75 ,1) ,2,2))
mc_mvn <- gibbs_met(log_f=log_pdf_mnormal ,no_var =2,

ini_value=c(0 ,0) ,iters =1000 , iters_met =1,
5 stepsizes _met=c(0.5 ,0.5) , mu=c(0 ,5) , A = A)

The results of both implementations are compared in Figure 4. We can see that both sample

the distribution efficiently but different. The more advanced method of the gibbs.met package,

1 http://www.mas.ncl.ac.uk/~ndjw1/teaching/sim/gibbs/gibbs.html. Retrieved on 30.03.2015

http://www.mas.ncl.ac.uk/~ndjw1/teaching/sim/gibbs/gibbs.html
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which includes a Metropolis step reaches a slightly more accurate chain after 1000 iterations.

We can also observe in Figure 4c and Figure 4d that the first algorithm has a better mixing than

the second algorithm. Comparing Figure 4e and Figure 4f shows that a burn-in phase might be

good for the gibbs with the Metropolis step but does not seem to be necessary for the Wilkinson

algorithm.
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(a) The first 100 iterations for the Wilkinson sam-
pling.

●

●

●●●

●
●●●

● ●

● ●

●

● ● ●●

●
●

●

●●

●

●

● ●

●
●

● ●

●●●●●
●

●

●

●

●

●

●●●
● ●

●
●

●

●

●●

●

●●● ●●

●●
●

●●●
●

●

●

● ●●
●

●
●

●●●●●●●
●

●
●

●

●

●

● ● ●

●

●

●

●

●

●●

●

● ●

−3 −2 −1 0 1 2

0
1

2
3

4
5

6

x
y

(b) The first 100 iterations for the gibbs.met pack-
age sampling.
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(c) Trace of the x variable for the first 100 iterations
by Wilkinson.
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(d) Trace of the x variable for the first 100 itera-
tions by the gibbs.met package.
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(e) Completed sampling by the Wilkinson algorithm
with a final correlation of 0.736.
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(f) Completed sampling by the gibbs.met package
with a final correlation of 0.741

Figure 4: Comparison of the Gibbs sampling results for both implementation variants.
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Gibbs sampling in R can be quite slow, but we can e. g. use C++ to fasten the sampling

process. The following code is first implemented in R then incorporated into C++. The code

was published by Darren Wilkinson on his research blog (https://darrenjw.wordpress.com/
2011/07/31/faster-gibbs-sampling-mcmc-from-within-r/. Retrieved on 30.03.2015). It

constructs a Gibbs sampler for the bivariate distribution

f (x,y) = kx3 exp{−xy2− y2 +2y−4x}.

The pure R code takes 1088s to run2. Running the code in C++ in comparison takes only 34s.

require (Rcpp)
require ( inline )

gibbscode = '
5 int N = as <int >(n);

int thn = as <int >( thin);
int i,j;
RNGScope scope;
NumericVector xs(N),ys(N);

10 double x=0;
double y=0;
for (i=0;i<N;i++) {

for (j=0;j<thn;j++) {
x = ::Rf_ rgamma (3.0 ,1.0/(y*y+4));

15 y= ::Rf_rnorm (1.0/(x+1) ,1.0/sqrt (2*x+2));
}
xs(i) = x;
ys(i) = y;

}
20 return Rcpp :: DataFrame :: create ( Named ("x")= xs , Named ("y") = ys);

'

RcppGibbsFn <- cxxfunction ( signature (n="int", thin = "int"),
gibbscode , plugin ="Rcpp")

25

RcppGibbs <- function (N=50000 , thin =1000)
{

RcppGibbsFn (N,thin)
}

2 Run on an Intel(R) Core(TM) i3 CPU @2.13GHz with 4GB RAM and Windows 7, 32-bit.

https://darrenjw.wordpress.com/2011/07/31/faster-gibbs-sampling-mcmc-from-within-r/
https://darrenjw.wordpress.com/2011/07/31/faster-gibbs-sampling-mcmc-from-within-r/
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6 Conclusion

This paper introduces to Gibbs sampling by first explaining Markov chains and their characteristics

and then introducing the Metropolis-Hastings algorithm. We also implemente Gibbs sampling

in R and see that a connection to C++ helps us fastening the sampling process. Markov chain

Monte Carlo methods and especially Gibbs sampling are powerful simulation methods, which

helps us to sample from the posterior distribution of the full Bayesian.

This paper restricts itself to the analysis of Gibbs sampling in the discrete case. But one could

further extent it to the analysis of the continuous case. Additionally, discussing Gibbs sampling in

undirected graphical models e. g. Markov Random fields is an interesting extension.
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