
information systems research

Advanced Analytics in R

– SEMINAR WINTER SEMESTER 2014/2015 –

Big Data Analytics with R and Hadoop

– SEMINAR PAPER –

Submitted by:

Nicolas Pröllochs

Advisor:
Prof. Dr. Dirk Neumann

Contents

1 Introduction 1

2 MapReduce 2

3 Installation Notes 3

4 Access within R 3
4.1 The rmr2 Package . 5

4.2 The rhdfs Package . 7

5 Example: Word Count 8

6 Summary 10

1 Introduction 1

Abstract
The statistical software R is a powerful and flexible tool that allows the development

of custom algorithms. As a drawback for Big Data analysis, R mainly involves in-

memory analysis. In contrast, the Hadoop framework stores the data in its own

file system which allows fast, parallel and scalable data processing. This feature in

combination with the integration of the MapReduce programming model overcomes

the in-memory problems of sole R analysis. In addition, Hadoop is open source and

allows for Big Data analysis at low computational costs. While several programming

frameworks for Hadoop exist, the RHadoop collection is particularly suited for the R

environment. The individual packages of this collection offer the possibility to access

and utilize Hadoop directly from within R and allow to write custom MapReduce

algorithms in a familiar manner.

1 Introduction

The Hadoop framework is an open source project which is designed to support large scale data

processing. As its main benefit, it integrates the MapReduce programming model which allows

fast processing of large datasets with a parallel, distributed algorithm. In connection with the

Hadoop distributed file system (HDFS), the Hadoop framework is particular suited for Big Data

analysis. Although the Hadoop implementation is written in Java, it offers a streaming API

which opens up implementation alternatives for other environments. While several programming

frameworks for Hadoop exist, the RHadoop collection is particularly suited for the R environment.

In this regard, it offers the possibility to access and utilize Hadoop directly from within R and

thus, allows to write custom MapReduce algorithms in a familiar manner.

The RHadoop collection consists of several individual packages. Thereby, the rmr2 package is

the foundation of the Hadoop integration into R. It provides the MapReduce functionality and

automatically translates the R code into the required Java code. Consequently, this package

provides a minimal standalone environment to utilize Hadoop from within R. The RHadoop

collection additionally includes the rhdfs package and the rhbase package which allow file

management and database management for the Hadoop distributed file system. A brief summary

of the three packages in the RHadoop collection is given in the following.

rmr2 Allows to write MapReduce algorithms with less code and thus, allows to access

to MapReduce programming paradigm to work on large datasets directly from

within R. For this purpose, it sets an abstraction layer on top of the Hadoop

implementation which allows to focus on the data analysis.

rhdfs Provides functions to access the file management of the HDFS directly from

within R.

rhbase Provides functions for database management of the HBase distributed database

from within R (not covered in this paper).

The purpose of this paper is to supply an introduction of how to utilize the Hadoop framework

from within R. Therefore, we provide a brief explanation of the MapReduce algorithm and present

the two main packages of the RHadoop collection. Furthermore, we highlight our presentation

2 MapReduce 2

using practical coding examples in order to illustrate how to utilize the Hadoop framework in the

R environment.

Consequently, this paper is structured as follows. Section 2 provides a brief introduction to the

MapReduce algorithm which is the foundation for the Hadoop implementation. Subsequently,

Section 3 provides some installation notes and a general overview of how to access the Hadoop

framework. In the following, Section 4 introduces the RHadoop collection, i. e. the required

packages to access Hadoop from within R. Finally, Section 5 illustrates a practical RHadoop

programming example.

2 MapReduce

As its main contribution, the Hadoop framework utilizes the MapReduce programming model

for large scale data processing. In fact, the MapReduce paradigm allows for efficient processing

of large amounts of data with a parallel, distributed algorithm. As a further advantage, the

MapReduce system manages all communications and data transfers between various parts of

the systems and provides for redundancy and fault tolerance. As visualized in Figure 1, the

MapReduce algorithm is divided into two basic steps. First, the Map() procedure performs

filtering and sorting of the data. Second, the Reduce() procedure performs a summary operation.

From a logical view, the map and reduce functions are both defined with respect to data that is

structured in key-value pairs. The map function takes one key-value pair (ki,vi) from one specific

type as input data and returns a list of pairs of a different type, formally

Map(k1,v1)→ list(k2,v2). (1)

In this manner, the map function is applied in parallel to every pair in the input dataset. This

process leads to a list of pairs for each call. Afterwards, all pairs with the same key from all lists

are collected and grouped together, resulting in one group for each key. Subsequently, the reduce

function is applied to each group, resulting in a collection of values, formally

Reduce(k2,list(v2))→ list(v3). (2)

In
p

u
t d

at
a

O
u

tp
ut

 d
at

a

Map()

Map()

Map()

Reduce()

Reduce()

Figure 1: The MapReduce process.

3 Installation Notes 3

Finally, the collection of all calls of the reduce function leads to the result list. Thus, the

MapReduce framework transforms a list of key-value pairs into a list of values. For more clarity,

the following enumeration lists up the individual steps of the MapReduce algorithm.

Input split Splits the MapReduce job into small tasks where each task analyses a dataset chunk.

Map The map function is computed for any task and produces a key-value pair.

Shuffle Data associated with the same key is grouped and moved to the same place.

Reduce The reduce function is computed for any key.

Output The outputs from the Reduce processes are collected, producing the results.

3 Installation Notes

The Hadoop installation1 is placed on a virtual machine running on Ubuntu 14.04 with 2 cores at

2.1 GHz, 4 GB RAM and 120 GB of storage. An overview of the installation properties of Hadoop

is given in Table 1.

Software Access Note
Ubuntu 14.04 is-hadoop-01.vwl.privat VM

Data Node is-hadoop-01.vwl.privat:50070 Browser
RStudio Server is-hadoop-01.vwl.privat:8787 Browser

Table 1: The installation properties of the Hadoop implementation.

A status report of the Hadoop framework is available from the browser via is-hadoop-01.vwl.

privat:50070. Furthermore, this browser interface (Figure 2) allows to access log files and to

browser Hadoop distributed file system (HDFS).

RStudio Server can be accessed from the browser via is-hadoop-01.vwl.privat:8787. This

browser environment provides the same graphical interface as the common local RStudio envi-

ronment (Figure 3). Before starting a session, RStudio requires username and password which

makes it possible to close a session and continue at a later point. Furthermore, this opens the

possibility to access RStudio and Hadoop with multiple user accounts at the same time. As an

advantage of this multi-user setup, each user is able to upload local files to his home directory

using the upload button in the graphical interface of RStudio.

4 Access within R

This section provides a step-by-step instruction of how to utilize Hadoop from within the statistical

software R. In this regard, we provide a brief introduction to the required R packages from the

RHadoop collection. As depicted in Section 3, the R interface for the Hadoop implementation

can be accessed using RStudio Server at is-hadoop-01.vwl.privatonport8787. This serves as

the initial point for the following package descriptions.

1 Installation instructions available from http://www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_
ubuntu_single_node_cluster.php.

is-hadoop-01.vwl.privat
is-hadoop-01.vwl.privat:50070
is-hadoop-01.vwl.privat:8787
is-hadoop-01.vwl.privat:50070
is-hadoop-01.vwl.privat:50070
is-hadoop-01.vwl.privat:8787
is-hadoop-01.vwl.privat on port 8787
http://www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_ubuntu_single_node_cluster.php
http://www.bogotobogo.com/Hadoop/BigData_hadoop_Install_on_ubuntu_single_node_cluster.php

4 Access within R 4

Figure 2: The Hadoop status interface, accessible via is-hadoop-01.vwl.privat:50070.

Figure 3: The RStudio Server interface, accessible via is-hadoop-01.vwl.privat:8787.

is-hadoop-01.vwl.privat:50070
is-hadoop-01.vwl.privat:8787

4 Access within R 5

4.1 The rmr2 Package

The rmr2 package is the foundation for the integration of Hadoop into R. In fact, it provides the

MapReduce function and thus, allows to write custom MapReduce jobs directly from within R.

For this purpose, the package automatically translates the R code into the required Java code for

the Hadoop framework. Furthermore, it also allows basic access to the Hadoop distributed file

system (HDFS). As a further advantage, this package allows the MapReduce function to access all

local R variables. Consequently, the rmr2 package provides a minimal standalone environment to

utilize Hadoop from within R. In order to write custom MapReduce algorithms for Hadoop, the

MapReduce function of the rmr2 package takes the following inputs.

• Map function

• Reduce function

• HDFS path of input file

• HDFS path of output file (optional)

All of the functions, i. e. the map function and reduce function take a key-value matrix as

input data and furthermore, also store their respective output in key-value form. The input and

output path arguments refer to files on the Hadoop distributed file system. As mentioned before,

the rmr2 package also provides rudimentary functions to access the HDFS. This functionality is

implemented using the following two functions.

to.dfs() Stores data on the HDFS

from.dfs() Retrieves data from the HDFS

The following examples illustrate the integration of the rmr2 package into R. First of all, the

rmr2 package requires access to the streaming API and to the Hadoop command in the Linux

installation folder. In R, these variables are stored using two environment variables, namely

HADOOP_CMD and HADOOP_STREAMING which are given in the following code snippet.

Sys. setenv (HADOOP_CMD = "/ usr/local/ hadoop /bin/ hadoop ")
Sys. setenv (HADOOP_STREAMING = "/ usr/local/ hadoop /share/ hadoop /tools/lib/

hadoop -streaming -2.4.1. jar ")

This setting enables us to load the rmr2 package to access Hadoop from within R by

library (rmr2)

As previously mentioned, the rmr2 package provides two basic commands to store and retrieve

objects from the HDFS. First, the to.dfs() command stores a big data object on the HDFS among

an arbitrary variable name. Second, the object can be retrieved using the from.dfs() command.

In both cases, the brackets embrace the desired variable name. The following example stores a

vector consisting of the numbers 1–10 among the variable name input on the HDFS. Consequently,

the output variable retrieves the data from the HDFS.

4 Access within R 6

input = to.dfs (1:10)
output = from.dfs(input)
output
$key
NULL

$val
[1] 1 2 3 4 5 6 7 8 9 10

The core application of the rmr2 package is the mapreduce() function that allows to write

custom MapReduce algorithms. The following code provides a simple example that demonstrates

how to exploit RHadoop for data analysis. For this purpose, we utilize GDP data from the year

2012 to calculate the number of countries that have a greater or lower GDP than Germany. We

start by storing the GDP data2 in a variable gdp while we store the GDP of Germany among

a variable gdp_germany. In addition, we send the GDP data to the HDFS via the to.dfs()

command using the following code snippet.

gdp <- read.csv (" GDP.csv", sep = ";")
head(gdp)

Economy Mio_USD
1 USA 16800000
2 CHN 9240270
3 JPN 4901530
4 DEU 3634823
5 FRA 2734949
6 GBR 2521381

gdp_germany = gdp [4 ,2]

gdp. values <- to.dfs(gdp)

Afterwards, we are able to define the map function and the reduce function. In our case,

the map function compares the current input GDP value with the GDP of Germany and emits

a key-value pair (less,1), if the current GDP value is smaller than the GDP of Germany and a

key-value pair (greater,1) otherwise. The following code snippet demonstrates the specification

of the required functions.

gdp.map.fn <- function (k,v) {
key <- ifelse (v[,2] < gdp_germany , "less", " greater ")
keyval (key , 1)

}

gdp. reduce .fn <- function (k,v) {
keyval (k, length (v))

}

Consequently, the map function, reduce function and the input stored on the HDFS allows to

run the MapReduce process by calling the following function.

2 GDP data available from http://data.worldbank.org/data-catalog/GDP-ranking-table

http://data.worldbank.org/data-catalog/GDP-ranking-table

4 Access within R 7

gdp.calc <- mapreduce (input = gdp.values ,
map = gdp.map.fn ,
reduce = gdp. reduce .fn)

Subsequently, R initiates a Hadoop streaming job to process the data using the MapReduce

algorithm.

...
14/11/27 04:25:13 INFO mapreduce .Job: map 100% reduce 100%
14/11/27 04:25:13 INFO mapreduce .Job: Job job_local311308709_0001 completed

successfully
...

If the MapReduce job is completed succesfully, the results can be retrieved using the to.dfs()

command in the following code snippet. We note that the output contains two possible key values

indicating whether a country has a greater or lower GDP in comparison to Germany.

from.dfs(gdp.calc)

$key
[1] "less" " greater "

$val
[1] 188 4

Evidently, there are 188 countries having a greater GDP than Germany and respectively, 4

countries that have a lower GDP than Germany.

4.2 The rhdfs Package

The rhdfs package provides basic connectivity to the HDFS which allows programmers to browse,

read, write and modify files stored in the HDFS. This functionality is provided by the well-known

Linux shell commands, e. g. ls, rm, mkdir, etc. In order to utilize the rhdfs package in R, we

have to set up the required environment variables and need to initialize the HDFS using the

hdfs.init() function. The following code provides a starting point to utilize the rhdfs package.

Sys. setenv (HADOOP_CMD ="/ usr/local/ hadoop /bin/ hadoop ")
Sys. setenv (HADOOP_STREAMING ="/ usr/local/ hadoop /share/ hadoop /tools/lib/hadoop -

streaming -2.4.1. jar ")
library (rhdfs)
hdfs.init ()

After setting up the package, we are able to access the HDFS. The following code snippet

allows to create and browse a new directory.

hdfs. mkdir ("/ examples ")
hdfs.ls ("/")

permission owner group size modtime file
1 drwxr -xr -x hduser supergroup 0 2014 -11 -25 14:37 / examples

5 Example: Word Count 8

2 drwxr -xr -x hduser supergroup 0 2014 -11 -25 12:41 /tmp
3 drwxr -xr -x hduser supergroup 0 2014 -11 -25 12:38 /user

As the probably most useful function of the rhdfs package, the hdfs.put() command allows

to copy a file from the local filesystem to the HDFS. This function takes two arguments: The

first argument provides the local path while the second argument points at the requested path

on the HDFS. The following code snippet copies a local text file to a specific path on the HDFS.

In addition, the code introduces the hdfs.read.text.file() command that allows to read the

stored text file from the HDFS.

writeLines (text = c(" Cat Tiger Horse", "Tiger Cat Dog", "Dog Tiger Horse "),
sep = '\n', " wordcount .txt ")

readLines (" wordcount .txt ")
[1] "Cat Tiger Horse" "Tiger Cat Dog" "Dog Tiger Horse"

hdfs.put (" wordcount .txt", "/ examples / wordcount .txt ")
hdfs.ls ("/ examples ")

permission owner group size modtime file
1 -rw -r--r-- hduser supergroup 46 2014 -11 -25 14:38 / examples / wordcount .txt

hdfs.read.text.file ("/ examples / wordcount .txt ")

[1] "Cat Tiger Horse" "Tiger Cat Dog" "Dog Tiger Horse"

It is noteworthy that the rhdfs package provides a huge number of additional commands.

Two of them are given in the following code. Thereby, the hdfs.rename() command allows to

rename a file directly on the HDFS while the hdfs.rm() command allows to delete a specific file

or directory.

hdfs. rename ("/ examples / wordcount .txt ","/ examples / renamed .txt ")
hdfs.ls ("/ examples)

permission owner group size modtime file
1 -rw -r--r-- hduser supergroup 46 2014 -11 -25 14:39 / examples / renamed .txt

hdfs.rm ("/ examples / renamed .txt ")
hdfs.ls ("/ examples ")

NULL

5 Example: Word Count

The following example counts the appearance of each in word in a set of documents. Therefore,

each document is split into words and each word is counted by the map function while each

map function uses a word as result key. Afterwards, the Hadoop framework automatically puts

together all key-value pairs with the same keys, i. e. words. Finally, the reduce function sums

up all its input values and thus, finds the total appearances of the corresponding word. In this

regard, Figure 4 visualizes the word count process of the MapReduce algorithm.

5 Example: Word Count 9

Cat, Tiger, Horse
Tiger, Cat, Dog

Dog, Tiger, Horse

Cat, 1
Tiger, 1
Horse, 1

Cat, Tiger, HorseTiger, Cat, DogDog, Tiger, Horse

Dog, 1
Tiger, 1
Horse, 1

Tiger, 1
Cat, 1
Dog, 1

Tiger, 1
Tiger, 1
Tiger, 1

Dog, 1
Dog, 1

Horse, 1
Horse, 1

Cat, 1
Cat, 1

Cat, 2Horse ,2 Tiger, 3Dog, 2

Cat, 2
Tiger, 3
Horse, 2
Dog, 2

Sp
littin

g
M

ap
p

in
g

R
ed

u
cin

g
Sh

u
fflin

g
Inp

ut
R

esu
lt

Figure 4: The MapReduce word count process.

6 Summary 10

To implement this word count task in R, we have to start by defining the required map function.

Thus, the following code produces a function that splits each documents into words and creates a

key-value pair for each single word.

wc.map = function (k,v) {
keyval (

unlist (
strsplit (

x = v,
split = " ")),

1)}

In a second step, we have to define the reduce function which summarizes the results from

the map function. Therefore, the following reduce function sums up each key-value pair and thus,

completes the word count process. Using the map function, the reduce function and a text file on

the HDFS, we are able to submit the MapReduce job using the arguments in the following code.

wc. reduce =
function (word , counts) {

keyval (word , sum(counts))}

wc.calc = mapreduce (
input = "/ examples / wordcount .txt",
input. format = "text",
map = wc.map ,
reduce = wc. reduce)

Finally, we are able retrieve the calculations from the HDFS using the from.dfs() command.

In this regard, the following code snippet presents the final results of the word count process.

result = from.dfs(wc.calc)
result
$key
[1] "Cat" "Dog" "Horse" "Tiger"

$val
[1] 2 2 2 3

data.frame(key=keys(result),val= values (result))
key val

1 Cat 2
2 Dog 2
3 Horse 2
4 Tiger 3

6 Summary

Hadoop provides a powerful framework for Big Data analysis. This framework stores the data in

a custom file system which allows fast, parallel and scalable data processing. In order to utilize

Hadoop from within the statistical software R, the RHadoop collection offers an easy to use

6 Summary 11

open source implementation. As a large benefit, this combination of R and Hadoop allows to

overcome the in-memory problems of common R analysis. For this purpose, the rmr2 package

allows to write custom MapReduce algorithms directly from within R and provides automatic

translation into Java code which is a requirement for Hadoop. Furthermore, the rhdfs package

allows to access the Hadoop distributed file system in R using standard Linux shell commands. It

is noteworthy that utilizing Hadoop is only efficient on large datasets because the overhead of

setting up a MapReduce job is likely higher than the runtime of the job itself. In addition, the

current Hadoop installation is based on a single node which does not exploit the full potential

of Hadoop. Consequently, future efforts could expand the single node Hadoop cluster using

additional slave nodes and thus, significantly improve the performance on Big Data analysis.

	Contents
	1 Introduction
	2 MapReduce
	3 Installation Notes
	4 Access within R
	4.1 The rmr2 Package
	4.2 The rhdfs Package

	5 Example: Word Count
	6 Summary

