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Abstract
Detection of negated parts in written sentences is often complex and difficult

to determine by a rule-based algorithm. Therefore, it can be useful to apply a

machine learning approach to predict negated parts within sentences. Because of their

flexibility and their comprehensive learning possibilities, Hidden Markov models can

be a suitable option for such a task. This paper provides an overview of this machine

learning approach and tests various types of Hidden Markov models to find negated

parts in sentences from financial news. In order to estimate the appropriateness of

different implementations, we compare our results with a manually labeled dataset.

1 Introduction

Human readers recognize a sentence as negated usually intuitively or by applying grammatical

rules. A large part of the sentiment of a sentence depends on categorizing possible negated parts

correctly. Also in sentiment analysis, it can be necessary to know which parts of a sentence are

negated and which are not. In order to evaluate sentences automatically, rules are necessary to

classify the negated phrases.

Not only single words, but also phrases in a sentence are often negated by a simple negation

word like “not” e. g. in “The economy has not grown”, while it is not always that ordinary. A

closer examination of negation in sentences makes clear that such a simple approach does not

cover all variations. In addition, negation in a sentence can be implicit, e. g. “The company has

invented a new product, it was the first and last time”. For an algorithm, it is difficult to consider

these linguistic cases, not to mention peculiarities such as sarcasm or irony. Therefore, it can be

senseful to use a machine learning approach and try to train a model which is able to predict the

negation scope out of experiences made in other sentences.

This paper now deals with the detection of negation scopes in sentences from financial news

using Hidden Markov models. We implement different variants of Hidden Markov models,

in order to predict the negated parts of a sentence. In addition, we include supervised and

unsupervised learning to train our model and calculate the impact of different implementations

on recall, precision, F-score and accuracy of the forecast. For this task, we create a program

which is listed in Appendix A.

First, we give an overview of related literature which deals in a similar way with the Hidden

Markov models approach (section 2) or negation scope prediction. In the next step, we explain

the basic structure and methodology of Hidden Markov models (section 3). Afterwards, we

illustrate our experimental setup and the way we implement suitable Hidden Markov models

for our dataset (section 4). In connection, we evaluate our experiment and discuss the results

(section 5). Section 6 closes with a summary of the main results.

2 Related Work

Hidden Markov models can be found in a wide field of research. Sonnhammer, Heijne, Krogh,

et al. achieve good results in the field of biology for prediction of transmembrane helices in

protein sequences [6]. Varga and Moore use Hidden Markov models for noise reduction in

speech recognition and reach significant improvements [8]. The impact of negations in sentiment
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analysis is investigated by Chapman et al., who make use of machine learning and find good

results in fields with short, concise sentences [3]. Lexicon-based researches by Dadvar, Hauff, and

Jong encounter problems particularly with indirect negations and stylistic devices like sarcasm

and metaphors [4].

This paper now uses the machine learning approach to forecast the negation scope of written

sentences in financial news. For this purpose, we implement several variations of Hidden Markov

models and train them through supervised and unsupervised learning in order to predict negated

parts in sentences. We use a manually-prepared corpus of financial market news, where we

marked each word as negated or not negated, which serves as our gold standard. Here, in

comparison to other studies like from Chapman et al., we also incorporate word types and word

stems to improve our forecast. Table 1 illustrates the comparison between related literature and

this paper.
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3 Methods

In this chapter, we describe the used methods to determine the negation scope using Hidden

Markov models. First of all, we create a test corpus consisting of sentences from financial market

news and their associated part of speech. Next, we manually mark the negated words in each

sentence, which serves as our gold standard. Afterwards, we implement several variants of

Hidden Markov models. Subsequently, we evaluate our model and calculate recall, precision,

F-score and accuracy of our forecast in context with our gold standard. Figure 1 shows that in a

flow diagram.

Corpus Negation
POS

manually

HMM

Learning

Evaluation

Viterbi algorithm

Figure 1: Flow diagram of HMM-based prediction of negation scopes.

3.1 Hidden Markov Models

In some cases, the true states of something we want to investigate are not directly observable, but

there are possible effects of these states, which can be observed. Such a system can be described

as an Hidden Markov model and is defined by the parameters in the following definition [5].

Definition: An Hidden Markov model is a generative probabilistic model which consists of N

not directly observable states and M distinct observation symbols per state, i. e. the size of the

emission alphabet. We denote the individual states as S = {S1,S2,...,SN}, the observation symbols

as V (t) = {v1,v2,...,vM}∀ t and the current state at t as qt . An Hidden Markov model contains a

state transition probability distribution A =
{

ai j
}

, where

ai j = P [qt+1 = S j | qt = Si] , 1≤ i≤ N, 1≤ j ≤ N, (1)

an observation symbol probability distribution B = {b j(k)} in state S j, where

b j(k) = P [Vk (at t) | qt = S j] , 1≤ j ≤ N, 1≤ k ≤M, (2)

and an initial distribution π = {πi}, where

πi = P [q1 = Si] , 1≤ i≤ N. (3)

A complete HMM requires specification of all the parameters above. The compact notation reads

as

λ = (A,B,π). (4)



3 Methods 5

We are confronted with a double stochastic process. After each period t, the current state

can remain or move to another state. Each state S = {S1,S2,...,SN} can reach each other state in

one step, that means ai j > 0 (for other types of HMM, it is possible to have ai j ≥ 0). Figure 2

shows that circumstances graphically. As the second stochastic process, each of these states

emit a random visible symbol O at step t of the emission alphabet V (Figure 3). In time T , the

model generates a sequence of observable states O = {O1,O2,...,OT}. Consequently, there are the

following three basic problems along with Hidden Markov models.

Evaluation: Computing the probability of an observation sequence O = {O1,O2, ...,OT} for a

model λ = (A,B,π) (section 3.1.1).

Decoding: Computing the corresponding state sequence Q = {q1,q2, ...,qT} to an observation O

and a model λ (section 3.1.2).

Learning: Adjustment of the parameters λ = (A,B,π) to maximize P(O | λ ) (section 3.2).

t = 1

S1

S2

t = 2

S1

S2

t = 3

S1

S2 State 1

a11

State 2

a12

a21

a22

Figure 2: Illustration of transition proceedings for an HMM with two states.

State 1 State 2

v1

b11

v2 v3 ... vM−1 vM

b2N

Figure 3: Illustration of emission proceedings for an HMM with two states.

3.1.1 Forward/Backward Algorithm

We can compute the probability for an observation O and a model λ , by summing the joint

probability over all possible state sequences via

P(O | Q) = ∑
∀q

P(O | Q,λ )P(Q | λ ). (5)

This can be considered as the probability that λ has produced the observable sequence O.

Equation (5) requires 2T ·NT calculations (even if we assume only 4 states and 100 observations,

we need 2 ·100 ·4100 ≈ 3 ·1062 computations), which clarifies that we need a more efficient way to
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solve the problem. In order to compute the probabilities for our model efficiently, we solve the

problem by dynamic programming [1]. We define

αi(t) = P(O1,O2,...,Ot ,qt = Si | λ ), (6)

as the probability of being in state Si at step t while emitting {O1,O2,...Ot}.
At step t = 1, we start with the initial probabilities π, and calculate αi(1), which is the probability

that the model is located at state Si in t = 1 while emitting O1 depending on the initial probabilities.

In the next step, we can compute the probability to move from a state Si in t to S j in step t +1

while emitting Ot+1. In the following, we can solve the problem for the whole observation

recursively, by

αi(t) =


πibi(O1), if t = 0,[

N
∑

i=1
αi(t−1)ai j

]
b j(Ot), otherwise.

The variable αi(t) denotes the probability to reach state Si at step t while emitting Ot if the

model has already produced t−1 elements of O. The total probability of generating the observable

sequence O is determined by the sum of αi(T ) over N. In addition, we can calculate a backward

variable βi(t) which gives us the probability of the partial observation from t +1 to T given state

Si at step t and the model λ . We are able to solve the problem for βi(t) inductively via

βi(t) =


1, if t = T,
N
∑

i=1
ai jb j(Ot+1)β j(t +1), otherwise.

3.1.2 Viterbi Algorithm

To find the most probable corresponding state sequence to a given observation O, we choose the

states Q which maximize the expected number of correct individual states, i. e.

γi(t) = P(qt = Si | O,λ ),
N

∑
i=1

γi(t) = 1, (7)

calculates the probability of being in state Si at step t given the observation sequence O and the

model λ . Using γ, we can compute the most probable state qt at step t, by

qt = argmax
1≤i≤N

[γi(t)] , 1≤ t ≤ T. (8)

3.2 Baum-Welch Algorithm

The Baum-Welch algorithm is an iterative procedure to adjust the model parameters (A,B,π),

in order to maximize the probability of an observation sequence O. Given an HMM and an

observation sequence, we can calculate the probability

ξi, j(t) =
αi(t)ai jb j(Ot+1)β j(t +1)

P(O | λ )
, (9)
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of being in state Si at step t and passing over to state S j at step t + 1 using the forward and

backward algorithm. Thereby, we are able to calculate the in Equation (7) defined probability

γi(t) of being in state Si at step t by summing ξi, j(t) over j via

γi(t) =
N

∑
j=1

ξi, j(t). (10)

If we sum up γi(t) over time T , we get the number of transitions made from state Si. Equally,

summation of ξi, j(t) over T can be interpreted as the expected number of transitions from state

Si to state S j. Using ξ and γ, we can reestimate the parameters for an HMM as shown in

Equation (11), by

π̂i = Expected number of times in state Si at step t = 1 = γi(1), (11a)

âi j =
Expected number of transitions from state Si to state S j

Expected number of transitions from state Si
=

T−1
∑

t=1
ξi, j(t)

T−1
∑

t=1
γi(t)

, (11b)

b̂ j(k) =
Exp. number of times in state S j and observing symbol vk

Exp. number of times in state S j
=

T
∑

t∈{τ|O(τ)=vk}
γ j(t)

T
∑

t=1
γ j(t)

. (11c)

To adjust the parameters of the HMM, we repeat this procedure iteratively until the likelihood

function of the model converges. Algorithm 1 shows the Baum-Welch algorithm in pseudocode.

It has been proven [2] that the algorithm leads to an increasing likelihood after each iteration I,

i. e. P(O | λ̂I+1)≥ P(O | λI).

Algorithm 1: Baum-Welch algorithm.
Data: ai j and b jk and V and convergence criterion.
begin

repeat
z← z+1

â(z)←

T−1
∑

t=1
ξt(i, j)

T−1
∑

t=1
γt( j)

b̂(z)←

T
∑

t∈{τ|O(τ)=vz}
γ j(t)

T
∑

t=1
γ j(t)

π̂(z)← γ1(i)
ai j← âi j(z−1)
b jk← b̂ jk(z−1)
πi← π̂i(z−1)

until convergence criterion achieved
return ai j and b jk

end
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4 Experimental Setup

This part describes the used dataset and the adaption of a suitable Hidden Markov Model for our

experiments.

4.1 Dataset

We use a dataset consisting of 590 negated sentences from financial market news. Each of

these sentences contains at least one negation phrase. The used phrases are shown in Ta-

ble 2b. In the first step, we assign each word in an observation sequence his corresponding part

of speech value. For this task, we use a limited amount of word types, which are listed in Table 2a.

Nouns Numerals
Adjectives Articles
Adverbs Conjunctions
Verbs Pronouns
Prepositions Interjections
Negations

(a) Used word classes.

no hardly
not denied/denies
*n’t without
rather

(b) Used negation phrases.

Table 2: Used word classes and negation phrases in our dataset.

In addition, we manually label each word in a sentence as negated or not negated. Our dataset

contains 16302 words, where ≈ 51 % of these words are negated. In summary, each observation

consists of a sequence of words, each of them associated with a word type and negation mark, as

shown below.

Word: The word itself, e. g. “successfull”.

Part of speech: Associated word type, e. g. “successfull” marked as adjective.

Negation: Decision variable, e. g. “successfull” marked as true after “not”.

4.2 Implementation

We specify an Hidden Markov model assuming two not directly observable states S ={Negated, ¬
Negated}. Each of this states emits as an observable symbol O at step t a part of speech out of

the emission alphabet V . An observation in our model consists of the emitted word types from

one sentence. Figure 4 illustrates this setup.

In the next step, we determine the transition probabilities and emission probabilities using

the data from our manually annotated dataset. To avoid overfitting, we use varying parts of the

data to train our model and the respective rest of the data for the evaluation. In this context, we

divide our dataset into several folds and take advantage of 10-fold cross validation [7]. For that,

we rotate the training part of the HMM to all parts of the dataset and evaluate recall, precision

and accuracy for the respective rest.

We also specify an HMM assuming the original words as emission symbols. Equally, we assume

the two hidden states S ={Negated, ¬ Negated} and several probabilities of each state to emit, in

this case, an observable word value O at step t.



5 Results 9

Start

Not negated Negated

a12

a22

Noun Article Adj. ... POS N−1 POS N

b2N

Figure 4: Illustration of a fitted Hidden Markov model for our experiment.

In addition, we implement the Baum-Welch algorithm, whereby we try to determine the

transition probabilities and emission probabilities by unsupervised learning. Also in this case, we

evaluate the results using the 10-fold cross validation approach in connection with the Viterbi

algorithm to calculate precision, accuracy and recall for the whole dataset.

Along with our objective, which is to determine the scope of negation as precisely as possible,

we implement a number of different tasks and determine their impact on precision, accuracy and

recall.

Task 1 Implementation of supervised learning and usage of word types for negation scope

prediction.

Task 2 Implementation of supervised learning and usage of words for negation scope prediction.

Task 3 Implementation of supervised learning and usage of stemmed words for negation scope

prediction.

Task 4 Implementation of unsupervised learning and usage of word types for negation scope

prediction.

Task 5 Implementation of unsupervised learning and usage of words for negation scope predic-

tion.

Task 6 Implementation of unsupervised learning and usage of stemmed words for negation

scope prediction.

5 Results

This section describes the determined results, subject to different approaches and lists them up.

We start our studies with supervised learning and train our corpus using 10-fold cross validation

based on word types. Afterwards, we use the Viterbi algorithm to calculate recall, precision,
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accuracy and F-score of our results for the respective rest of the dataset (task 1). In the next

step, we use the real words as basis for our HMM and also evaluate the model using the cross

validation approach (task 2). In connection, we test the model with the stems of the words

(task 3). Thereafter, we implement unsupervised learning using the Baum-Welch algorithm [1].

In this case, we learn an Hidden Markov model with the assigned part of speech. Subsequently,

we evaluate the Viterbi algorithm calculations for the rest of the dataset (task 4). With task 5, we

expand the unsupervised learning approach using the word values as basis for the Baum-Welch

algorithm and the evaluation. Finally, we repeat this attempt using the word stems in order to

implement a suitable HMM for negation scope prediction. The results for the tasks described

above are listed in table 3.

Task Type Data Recall Precision Accuracy F -score

1 Supervised POS 0.7583542 0.6849005 0.7076915 0.7197582

2 Supervised Word 0.4884480 0.8408996 0.6937186 0.6179509

3 Supervised Stem 0.5348978 0.7921892 0.6929825 0.6386021

4 Unsupervised POS 0.1830618 0.5687865 0.5269306 0.2769790

5 Unsupervised Word 0.5098162 0.5208022 0.5251732 0.5152507

6 Unsupervised Stem 0.5053258 0.5321091 0.5352011 0.5183717

Table 3: Results for different implementations of the tasks from section 4.2.

Starting with supervised learning, we use word types for the prediction of negated words in a

sentence (task 1). We can reach an accuracy of 0.708 and a F-Score of 0.720 using 10-fold cross

validation. Afterwards, we implement task 2, where we use real words as emission symbols. In

this experiment, we reach less accurate results than in the previous task. We reach a F-Score of

0.618 which is mainly caused by the fact that the training shares do not include all the emission

symbols of the whole dataset. The accuracy of the results is also smaller than in the previous task,

we calculate a value of 0.694. In addition, we repeat the experiment for word stems as emission

symbols (task 3). Although the emission alphabet is smaller in this case, we do not find much

better results than in task 2. The calculated F-Score is located at 0.639 and the accuracy is 0.693.

Subsequently, we introduce unsupervised learning using the Baum-Welch algorithm. We start

with task 4, where we use word types as observation data. We are able to attain an accuracy of

0.527 and a F-Score of 0.277. After that, we implement task 5 and use the real words as basis for

our HMM. With this variant, we are able to receive an accuracy of 0.525 and a F-Score of 0.515.

Finally, we use word stems as emission symbols for our model (task 6) and reach an accuracy

of 0.535 and a F-Score of 0.518. In the unsupervised experiments, we are able to reach higher

recall values for words and stems than for word types as basis for the HMM. The accuracy values

for the different bases are quite similar. For all the unsupervised learning tasks, we reach less

accurate results than for the corresponding supervised tasks. In addition, experiments with word

stems as emission symbols in comparison to word-based experiments do not lead to significant

improvements.

It becomes apparent that an HMM which uses supervised learning and word types as observa-

tion data is most suitable for our experiment. This is mainly based on the relatively small dataset.
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If we use real words or word stems as observation data, we are confronted with the problem that

the words in our dataset are too infrequent. There is a amount of words in our dataset which is

located in the dataset, but not in the respective training part. The supervised learning approach

leads to much better results than the unsupervised learning approach. We find much higher

values for accuracy and F-Score which can be explained by the fact that the data is too unspecific.

Particularly in the case of using word types as observation data, the Baum-Welch algorithm is not

able to find a sufficient adjustment for our dataset.

In general, Hidden Markov models are a suitable option for the task of negation scope

prediction, but require a large amount of data. Presumably, the results can be improved, if we

use a more specific and larger dataset. In addition, a combination of a rule-based algorithm and

a machine learning approach is recommendable.

6 Summary

We implement several variants of Hidden Markov models to recognize negated parts of sentences.

For our experiments, we use a dataset which consists of 590 sentences from financial news. In the

field of supervised learning, we can attain values for accuracy of 0.708 and a F-Score of 0.720 for

word types as observable symbols. We do not find large differences between the implementation

with real words and the implementation with word stems. The found accuracy is 0.694 and the

F-Score is located at 0.618 for real words. Using unsupervised learning, i. e. the Baum-Welch

algorithm, we are able to reach an accuracy value of 0.527 and a F-Score of 0.277 for word types

as emission symbols. Also in this case, the reached results for real words and word stems are

quite similar. The found accuracy for real words is 0.525 and the F-Score 0.515.

It became clear that our supervised learning implementation is much more reliable than the

unsupervised learning implementation, which is not able to predict the negation scope sufficiently.

In addition, we find the best results for word types as observable symbols using the supervised

learning approach. Our algorithm offers easy exchange options for other datasets and part of

speech modifications, still, in further analysis, the dataset should be expanded and consider both

machine learning and grammatical rules.
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A Source Code

A.1 Main.R

library (HMM ,RHmm)
source ("code/ ReadDataset .R")
source ("code/Task.R")
source ("code/ Results .R")

5 source ("code/ Analysis .R")
source ("code/ Training .R")

tasks <-list(new("Task",Supervised =T,Base="word_ types ",training _ ratio =0.1 , ID =1) ,
new("Task",Supervised =T,Base=" words ",training _ ratio =0.1 , ID =2) ,

10 new("Task",Supervised =T,Base=" stems ",training _ ratio =0.1 , ID =3) ,
new("Task",Supervised =F,Base="word_ types ",training _ ratio =0.1 , ID =4) ,
new("Task",Supervised =F,Base=" words ",training _ ratio =0.1 , ID =5) ,
new("Task",Supervised =F,Base=" stems ",training _ ratio =0.1 , ID =6))

15 dataset <-ReadDataset (path=" Dataset / reuters1 .csv")
results <-list ()

for (i in 1: length ( tasks )) {
results [[ length ( results )+1]] <-Scope _ Analysis (task= tasks [[i]], dataset = dataset )

20 }
rm(i)

A.2 ReadDataset.R

setClass (" Dataset ",representation = representation (
data_neg="list",
data_text="list",
data_ stems ="list",

5 data_wc="list"))

ReadDataset <-function (path) {
Dataset <-read.csv(path , header = F, sep=";")
sentences <-as. matrix ( Dataset [ ,1])

10 stems <-as. matrix ( Dataset [ ,2])
wc <-as. matrix ( Dataset [ ,3])
negations <-as. matrix ( Dataset [ ,4])

data_text <-list ()
15 data_ stems <-list ()

data_wc <-list ()
data_neg <-list ()

for (line in 1: dim( sentences )[1]) {
20 data_text[line]<-c( strsplit ( sentences [line ,],"[[: space :]]+"))

data_ stems [line]<-c( strsplit ( stems [line ,],"[[: space :]]+"))
data_wc[line]<-c( strsplit (wc[line ,],"[[: space :]]+"))
data_neg[line]<-c( strsplit ( negations [line ,],"[[: space :]]+"))
data_neg [[ line ]] <-as. logical (data_neg [[ line ]])

25 }

rm(line ,sentences ,stems ,wc ,negations , Dataset )
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db <-new(" Dataset ", data_text=data_text , data_neg=data_neg , data_ stems =data_stems , ←↩
data_wc=data_wc)

return (db)
30 }

CreateHMM <-function (dataset ,task) {
bases <-factor (c(" words "," stems ","word_ types "))
if( task@Base == bases [1]) {

35 eleB <-unique (c( unlist ( dataset@data _text)))
} else if( task@Base == bases [2]) {

eleB <-unique (c( unlist ( dataset@data _ stems )))
} else if( task@Base == bases [3]){

eleB <-unique (c( unlist ( dataset@data _wc)))
40 }

eleA <-unique (c( unlist ( dataset@data _neg)))
A_T<-matrix (0, length (eleA),length (eleA))
colnames (A_T)<-eleA

45 rownames (A_T)<-eleA
B_T<-matrix (0, length (eleA),length (eleB))
colnames (B_T)<-eleB
rownames (B_T)<-rownames (A_T)
Phi_T<-A_T[ ,1]

50 rm(eleA ,eleB)

hmm = initHMM ( rownames (A_T),colnames (B_T),
startProbs =Phi_T,
transProbs =A_T,

55 emissionProbs =B_T)

return (hmm)
}

A.3 Task.R

setClass ("Task",representation = representation (
ID=" numeric ",
Supervised =" logical ",
Base=" character ",

5 training _ ratio =" numeric "),
prototype = prototype (ID=0, Supervised =T))

setMethod ("show",signature ( object ="Task"),
function ( object ) {

cat(" ----------------------------------------\n")
10 cat( toString (Sys.time ()),"\n")

cat(" Supervised : ",toString ( object@Supervised ),"\n")
cat("Base: ",toString ( object@Base ),"\n")
cat(" Training ratio : ",toString ( object@training _ ratio ),"\n")
cat(" ----------------------------------------\n")

15 })

A.4 Results.R

setClass (" Result ",representation = representation (
Precision =" numeric ",
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Recall =" numeric ",
Fmeasure =" numeric ",

5 Accuracy =" numeric ",
Prediction ="list",
TrueValues ="list",
Task="Task"),

prototype = prototype ( Fmeasure =0))
10

setMethod ("show",signature ( object =" Result "),
function ( object ) {

cat(" ----------------------------------------\n")
cat( toString (Sys.time ()),"\n")

15 cat(" Result for task with ID: ",object@Task@ID ,"\n")
cat("With base: ",object@Task@Base ,"\n")
cat(" Supervised : ",toString ( object@Task@Supervised ),"\n")
cat("CV ratio : ",toString ( object@Task@training _ ratio ),"\n\n")

20 cat(" Recall : ",object@Recall ,"\n")
cat(" Precision : ",object@Precision ,"\n")
cat("F- measure : ",object@Fmeasure ,"\n")
cat(" Accuracy : ",object@Accuracy ,"\n")
cat(" ----------------------------------------\n")

25 })

Evaluate _ results <-function ( prediction , trueValues ,task) {
precision <-sum(as. logical ( unlist ( prediction )) & unlist ( trueValues )) ←↩

/sum(as. logical ( unlist ( prediction )))
recall <- sum(as. logical ( unlist ( prediction )) & unlist ( trueValues )) / ←↩

sum( unlist ( trueValues ))
30 Fmeasure <- 2 * precision * recall / ( precision + recall )

accuracy <- (sum(as. logical ( unlist ( prediction )) & unlist ( trueValues ))
+ sum(!as. logical ( unlist ( prediction )) & ! unlist ( trueValues ))) ←↩

/ length ( unlist ( trueValues ))
result <-new(" Result ")
result@Recall <-recall

35 result@Precision <-precision
result@Fmeasure <-Fmeasure
result@Accuracy <-accuracy
result@Prediction <-prediction
result@TrueValues <-trueValues

40 result@Task <-task
return ( result )

}

A.5 Training.R

Training <-function (hmm ,data_true ,data_base) {

for (x in colnames (hmm$ emissionProbs )) {
n<-which ( unlist (data_base)==x)

5 hmm$ emissionProbs [1, which ( colnames (hmm$ emissionProbs )==x)] = ←↩
sum(! unlist (data_true)[n])

hmm$ emissionProbs [2, which ( colnames (hmm$ emissionProbs )==x)] = ←↩
sum( unlist (data_true)[n])

}

hmm$ startProbs [1] <-sum(! sapply (data_true , function (x) x[1]))
10 hmm$ startProbs [2] <-sum( sapply (data_true , function (x) x[1]))
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j<-sapply (data_true , function (x) x[ -1])
h<-sapply (data_true , function (x) x[- length (x)])
hmm$ transProbs [1 ,1] <-sum(! unlist (h)&! unlist (j))

15 hmm$ transProbs [1 ,2] <-sum(! unlist (h)& unlist (j))
hmm$ transProbs [2 ,1] <-sum( unlist (h)&! unlist (j))
hmm$ transProbs [2 ,2] <-sum( unlist (h)& unlist (j))

hmm$ startProbs <-hmm$ startProbs / sum(hmm$ startProbs )
20 for (i in 1: dim(hmm$ transProbs )[1]) {

hmm$ transProbs [i ,] <-hmm$ transProbs [i ,]*1/sum(hmm$ transProbs [i ,])
}
for (i in 1: dim(hmm$ transProbs )[1]) {

hmm$ emissionProbs [i ,] <-hmm$ emissionProbs [i ,]*1/sum(hmm$ emissionProbs [i ,])
25 }

rm(i)
return (hmm)

}

A.6 Analysis.R

chunk <- function (x,n){
numOfVectors <- floor ( length (x)/n)
elementsPerVector <- c(rep(n, numOfVectors -1) ,n+ length (x) %% n)
elemDistPerVector <- rep (1: numOfVectors , elementsPerVector )

5 split (x, factor ( elemDistPerVector ))
}

Scope _ Analysis <-function (task , dataset ) {
if ( task@Supervised ) {

10 require (HMM)
} else {

if ( require (HMM , quietly =TRUE)) {
detach (" package :HMM", unload =TRUE)

}
15 require (RHmm)

}

bases <-factor (c(" words "," stems ","word_ types "))
if ( task@Base == bases [1]) {

20 data_base <-dataset@data _text
} else if ( task@Base == bases [2]) {

data_base <-dataset@data _ stems
} else if ( task@Base == bases [3]) {

data_base <-dataset@data _wc
25 } else {

stop("Base does not exist !")
}

n<- floor ( length ( dataset@data _neg)* task@training _ ratio )
30 numvectors <-floor ( length ( dataset@data _neg)/n)

data_base_ chunks <-chunk (data_base ,n)
data_neg_ chunks <-chunk ( dataset@data _neg ,n)

35 prediction <-list ()
trueValues <-list ()

if ( task@Supervised ) {
hmm <-CreateHMM (dataset ,task)
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40 for (part in 1: numvectors ) {

hmm_ trained <-Training (hmm , unlist (data_neg_ chunks [-part], recursive =F), ←↩
unlist (data_base_ chunks [-part], recursive =F))

for (i in 1: length (data_neg_ chunks [[ part ]])) {
45 vit <-viterbi (hmm_trained ,data_base_ chunks [[ part ]][[i]])

prediction [[ length ( prediction )+1]] <-vit
trueValues [[ length ( trueValues )+1]] <-data_neg_ chunks [[ part ]][[i]]

}
rm(i,vit)

50 }

} else {
for (part in 1: numvectors ) {

hmm_ trained <-HMMFit ( unlist (data_base_ chunks [-part], recursive =F), ←↩
dis=" DISCRETE ", nStates =2, control =list( nInit =500) )

55

for (i in 1: length (data_neg_ chunks [[ part ]])) {
vit= viterbi (hmm_trained ,data_base_ chunks [[ part ]][[i]])$ states
prediction [[ length ( prediction )+1]] <-as. logical (vit -2)
trueValues [[ length ( trueValues )+1]] <-data_neg_ chunks [[ part ]][[i]]

60 }
rm(i,vit)

}
}

65 result <-Evaluate _ results ( prediction , trueValues ,task)
capture . output (show( result ),append =TRUE ,file=" Output / output .txt")
return ( result )

}



B References

[1] L. E. BAUM. An equality and associated maximization technique in statistical estimation for
probabilistic functions of Markov processes. In: Inequalities, Vol. 3 (1972), pp. 1–8.

[2] L. E. BAUM and G. R. SELL. Growth transformations for functions on manifolds. In: Pacific J.
Math, Vol. 27, No. 2 (1968), pp. 211–227.

[3] W. W. CHAPMAN et al. A simple algorithm for identifying negated findings and diseases in
discharge summaries. In: Journal of biomedical informatics, Vol. 34, No. 5 (2001), pp. 301–

310.

[4] M. DADVAR, C. HAUFF, and F. DE JONG. Scope of negation detection in sentiment analysis. In:

(2011).

[5] L. R. RABINER. A tutorial on hidden Markov models and selected applications in speech
recognition. In: Proceedings of the IEEE, Vol. 77, No. 2 (1989), pp. 257–286.

[6] E. L. SONNHAMMER, G. VON HEIJNE, A. KROGH, et al. A hidden Markov model for predicting
transmembrane helices in protein sequences. In: Ismb. Vol. 6. 1998, pp. 175–182.

[7] M. STONE. Cross-validatory choice and assessment of statistical predictions. In: Journal of the
Royal Statistical Society. Series B (Methodological) (1974), pp. 111–147.

[8] A. VARGA and R. MOORE. Hidden Markov model decomposition of speech and noise. In:

Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International Conference on.

IEEE. 1990, pp. 845–848.



C List of Figures

1 Flow diagram of HMM-based prediction of negation scopes. . . . . . . . . . . . . 4

2 Illustration of transition proceedings for an HMM with two states. . . . . . . . . . 5

3 Illustration of emission proceedings for an HMM with two states. . . . . . . . . . 5

4 Illustration of a fitted Hidden Markov model for our experiment. . . . . . . . . . 9



D List of Tables

1 Related literature incorporating Hidden Markov models to predict negation scopes. 3

2 Used word classes and negation phrases in our dataset. . . . . . . . . . . . . . . . 8

3 Results for different implementations of the tasks from section 4.2. . . . . . . . . 10


	Contents
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Hidden Markov Models
	3.2 Baum-Welch Algorithm

	4 Experimental Setup
	4.1 Dataset
	4.2 Implementation

	5 Results
	6 Summary
	A Source Code
	A.1 Main.R
	A.2 ReadDataset.R
	A.3 Task.R
	A.4 Results.R
	A.5 Training.R
	A.6 Analysis.R

	B References
	C List of Figures
	D List of Tables

