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1 Introduction 1

1 Introduction

Linear regression is a supervised learning model used for prediction and for explaining the

relationship between a dependent and an independent variable [5]. Ordinary Least Squares

(OLS) is the most commonly used method for fitting the linear regression model. Generally, the

main purpose of a model is to use some data in order to predict future observations. Prediction

accuracy and model complexity are two important concepts to be taken into account when

performing prediction or when explaining relationships between variables [1]. The OLS method

displays low performance with respect to these two criteria. OLS exhibit several statistical and

numerical problems which result in variable coefficient estimates, low predictive power and

not easily interpretable results. Some of the problems include multicollinearity, a number of

predictors higher than the number of observations or high variance.

Regularization techniques such as lasso and ridge regression overcome some of the problems

of OLS. Ridge regression shrinks the coefficients estimates towards zero, in this way improving

the variability, reducing the variance while slightly increasing the bias and raising the overall

accuracy of the model. However, when the number of predictors is high, ridge regression results

in models that are difficult to interpret. Another regularization technique called lasso improves

both accuracy and model interpretability by selecting which coefficients to shrink and by shrinking

some of them exactly to zero [7].

This paper provides an introduction into these two techniques. It is structured as follows. As

both of these technique extend the basic OLS model, Section 2 starts with a brief theoretical

background of OLS and discusses some of its limitations. To overcome some of the limitations of

OLS, we introduce ridge regression in Section 3. We start by motivating ridge regression with the

bias-variance trade-off, then introduce its mathematical formulation and finally discuss how this

method performs shrinkage. As an improvement of the ridge technique, we present the lasso in

Section 4. Like in the case of ridge, we cover its mathematical formulation and the shrinkage

method. After understanding the basic principles of both methods, we look at them comparatively

through a geometrical and Bayesian lens in Section 5. Finally, we conclude in Section 6.

2 Ordinary Least Squares

Both ridge regression and lasso build upon OLS. We first look at this model and its limitations in

this chapter.

2.1 Estimation of Ordinary Least Squares

Given the n tuples of training data (yi,x1i, . . . ,xni), a multiple regression model describing the

relationship between the dependent variable y and the independent variables x j is

y = β0 +
N

∑
j=1

β jx j + ε, (1)
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where ε is the error term and β0 the intercept. We predict the value of y based on the value of x j,

by computing the following equation

ŷ = β̂0 +
N

∑
j=1

β̂ jx j, (2)

where the hat symbol indicates the estimated coefficients. In order to fit this model, we typically

use a method called least squares or Ordinary Least Squares (OLS). The idea behind OLS is to

find the parameters β̂ j such that the regression line is the closest line to the data points (xni,y)

[8]. The OLS method estimates the coefficients β1, . . . ,βn by minimizing a quantity known as the

Residual Sum of Squares (RSS). This is defined as

RSS =
N

∑
j=1

(yi− ŷ)2 =
N

∑
j=1

[yi− (β̂0 +
N

∑
j=1

β̂ jx j)]
2, (3)

where yi is the actual value and ŷ is the predicted value. Differentiating the equation above with

respect to β̂ j and solving for β̂ j yields the OLS coefficients, which we denote β̂OLS. Hence, the

OLS estimates are

β̂OLS = argmin
β

N

∑
j=1

[yi− (β0 +
N

∑
j=1

β jx j)]
2. (4)

In order to gain more insight into how OLS work, we express the coefficients estimates in matrix

algebra representation. In this case, the regression model is y = Xβ +u, where y is the output

vector of n observations, β is a (p+1)×1 vector and X is a n× (p+1) matrix with 1’s on the first

column and each row an input vector. Therefore, the RSS expression from Equation (3) becomes

RSS = (y−Xβ )T (y−Xβ ). (5)

By differentiating this quantity and performing some calculations, we obtain the OLS coefficient

estimates in matrix form

β̂OLS = (XT X)−1XT y, (6)

where XT is the transpose of matrix X and X−1 is the inverse of matrix X . An important

assumption for this solution to hold is that the matrix XT X is non-singular or invertible [8]. This

form of the OLS estimates gives more insight into the limitations of OLS, discussed in the next

section.

2.2 Properties and Limitations of OLS

The OLS estimators are the best linear unbiased estimators (BEST), under the assumptions of

the Gauss-Markhov theorem [8]. This means that the parameter estimates are unbiased and give

the least variance out of all unbiased estimators. However, in some situations these assumptions

do not hold. Firstly, OLS faces problems such as multicollinearity, which happens when the β j

coefficients are highly correlated with each other. In this case, the OLS estimate is no longer

the best estimator. Mathematically, this happens because the matrix (XT X) from Equation (6)

is no longer singular (or ill-conditioned), so that the estimators have very high variance and

exhibit numerical problems. Hence, OLS is an unstable solution [9]. Moreover, when the model
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contains a large number of predictors, the coefficient estimates are variable and cannot be

computed [4]. Further reasons why OLS need to be modified are the accuracy of the model and

the interpretability of the model. OLS estimates are often difficult to interpret when the model

contains many predictors. In this situation, OLS exhibits low bias and a large variance, which

influences negatively the prediction accuracy [9].

This raises the necessity of finding some alternatives to the OLS technique. We need a technique

to select only the relevant variables to include in the model, reduce the variance in such a way

that the model has a good accuracy and is easy to understand. One class of these techniques is

known as shrinkage or regularization [7]. These methods shrink the coefficients towards zero,

reduce the variance and select which coefficients to bring or not to zero. Two regularization

techniques are ridge regression and lasso [5].

3 Ridge Regression

Ridge regression solves some of the shortcomings of linear regression. Ridge regression is an

extension of the OLS method with an additional constraint. The OLS estimates are unconstrained,

and might exhibit a large magnitude, and therefore large variance. In ridge regression, the

coefficients are applied a penalty, so that they are shrunk towards zero, this also having the effect

of reducing the variance and hence, the prediction error. Similar to the OLS approach, we choose

the ridge coefficients to minimize a penalized residual sum of squares (RSS). As opposed to OLS,

ridge regression provides biased estimators which have a low variance [4].

3.1 Bias Variance Trade-Off

In order to understand the improvement of ridge regression over OLS, we first look at the relation

between bias and variance. The bias represents the extent to which the expected prediction

is different from the value we are actually predicting. Mathematically this is equivalent to the

squared difference between the true mean and the expected value of the estimate. The variance

represents how much the predictions for an individual data point varies around their average

when measurements are repeated [1].

Bias and variance strongly affect the prediction error. This is apparent by looking at the Mean

Squared Error (MSE), a popular estimation quantity, which is defined as

MSE = Bias2 +Variance. (7)

Bias and variance also have an effect on the model complexity. Usually, the issue of model

complexity (high number of predictors) is dealt with by dividing the data into a training and a

validation set (or test set) and by estimating the coefficients from the training set [1]. When a

model contains a large number of parameters, the complexity increases. This has the effect of

increasing the variance and decreasing the bias. In the other case, when the model complexity

decreases, the variance decreases at the cost of increased bias. We choose the appropriate model

complexity such that bias trades off for variance in a way that reduces the error on the test set

[3]. The over fitting phenomenon is often a consequence of model complexity. Over fitting means
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that a model performs good on the training set but poorly on the test set. Therefore, the relation

between variance and bias strongly influences over-fitting and under-fitting. Figure 1 depicts how

the variance and bias vary as model complexity is modified.

Training Sample

Test Sample

Low Bias
High Variance

High Bias
Low Variance

Model Complexity
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Figure 1: The Bias-Variance Trade-off Achieved with Ridge Regression: Influence on Pre-
diction Error and Model Complexity (adapted from [3]).

When the model complexity is high, we have a large error on the test set, and the predictions

exhibit a large variance. If the model complexity is low, under-fitting occurs, resulting in large

bias. Typically, the model with the best predictive capability achieves a balance between bias and

variance [1]. Ridge regression reaches a trade-off between bias and variance. In the following

sections, we show that it produces biased estimates with a large variance and that it works well

in situations when there is a large number of predictors. This solves the problem of variability in

OLS, which exhibit low bias but high variance [3].

3.2 Mathematical Formulation

This section provides the mathematical formulation of ridge regression. In order to understand its

advantages over OLS, we examine three mathematical ways to express the ridge coefficients. The

coefficients for the ridge regression are obtained from minimizing the RSS, with an additional

constraint given by

β̂ridge = argmin
β

{
N

∑
j=1

(yi− (β0 +
N

∑
j=1

β jx j))
2 +λ

N

∑
j=1

β
2
j

}
(8)

= argmin
β

(RSS+λ

N

∑
j=1

β
2
j ), (9)
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where the term λ ∑
N
j=1 β 2

j is known as a "shrinkage penalty", λ is the tuning parameter which we

discuss in the following section and ∑
N
j=1 β 2

j is the square of the norm of the vector β . This is

known as the l2 norm and is defined as ||β ||2 =
√

∑
N
j=1 β 2

j . In other words, the ridge coefficients

β̂ridge minimize a penalized RSS, and because the penalty is given by the l2 norm, we call it an L2

penalty [9].

Before finding the parameters β̂ridge, we consider two important assumptions for ridge regression.

Firstly, the intercept is not penalized. Secondly, the predictors need to be standardized. In

contrast with OLS estimates, where multiplying by a constant will scale the coefficients inverse

proportionally; the ridge coefficients can change drastically when there is a multiplication with a

constant. Hence, for each xij from the training data, we subtract its mean then divide it by the

standard deviation [3]. Therefore, standardizing the inputs yields an intercept and predictors

given by

β0 = y =
n

∑
j=1

yi

n
, (10)

xij = xij/

√
1
n

n

∑
j=1

(xij− xj), (11)

where y, xij, xj represent the standardized values.

Next we consider ridge regression in matrix algebra representation. We take an input matrix X,

which is an n by p matrix with centered inputs, and y a centered n vector. The main convention in

ridge regression is that the intercept is left out of the equation. In addition, matrix X is centered,

with zero mean and variance unity, and the response y is also centered, with zero mean. After

standardizing the inputs, we express the minimization problem in Equation (9) in terms of

matrices, as an L2 penalized problem

β̂ridge = argmin
β

1
2
||y−Xβ ||2 +λ ||β 2||. (12)

The ridge coefficients become

β̂ridge = (XT X +λ I)−1XT y, (13)

where I is the identity matrix. This shows that, opposed to OLS, ridge regression always provides

an unique solution. This is because the quantity (XT X +λ I) is always invertible even in the case

when the matrix XT X non-singular. This argument was the starting point of ridge regression [4].

Another equivalent formulation of ridge regression is obtained by minimizing a constrained

version of the RSS

β̂ridge = argmin
β

N

∑
j=1

(yi− (β0 +
N

∑
j=1

β jx j))
2, (14)

subject to

N

∑
j=1

(β j)
2 < t, (15)
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where t is a shrinkage factor, t > 0. Hence, we obtain the ridge coefficients by minimizing the

RSS subject to a constraint given by an L2 penalty [9].

3.3 Significance of Lambda

In the following, we discuss the importance of the parameter lambda, the shrinkage or tuning

parameter. The variable λ controls the amount of shrinkage in the ridge estimates and the size

of the coefficients. When its value increases and approaches ∞, the β̂ridge coefficients are shrunk

towards zero. When its value is 0, we obtain the usual OLS estimates. For every value of λ , a

different set of regression coefficients will be generated, as opposed to OLS which provides only

one set of coefficients [5].

The value of this parameter plays an important role for the accuracy of the model and it is

usually chosen by cross-validation [5]. This performs by taking a grid search of values for λ and

computing the corresponding errors for each value of λ . We consider the value of λ for which

the error is smaller and then train the model again with this value [3]. The λ parameter is also

responsible for the degree of complexity of the model, which has a direct effect on the degree of

over-fitting [1]. When λ increases, variance decreases, however, this increases the bias. When λ

increases, the opposite behavior happens.

Another concept strongly connected with the shrinkage parameter and model complexity is the

effective degrees of freedom. For OLS, the degrees of freedom is equal to the number of free

parameters denoted by p. For ridge regression, the degrees of freedom are defined as a function

of λ , or more exactly, as the trace of the following expression

d f (λ ) = tr[X(XT X +λ I)−1XT ] (16)

=
p

∑
j=1

d2
j

d2
j +λ

, (17)

where d j represent the singular values of matrix X (discussed in the following section), or simply

the eigenvalues of the matrix XT X . This is a decreasing function of λ . When λ = 0, meaning

no penalization, the d f (λ ) = p; but when λ → ∞, then the d f (λ )→ 0 as a consequence of the

parameters being heavily penalized (or constrained). Thus, the more shrinkage is applied, the

lower the degrees of freedom [3]. Degrees of freedom are important in calculating some model

selection criteria for estimating λ [2].

3.4 Shrinkage

In this section, we investigate further the nature of the shrinkage performed by ridge regression.

Ridge regression performs a constant shrinkage on the coefficients, with the shrinkage given by

an amount of λ . Ridge regression includes all of the variables of the model [5]. Like mentioned

previously, the ridge estimator is a biased estimator of β , as opposed to the OLS estimate which

gives an unbiased estimate. An interesting case is when we consider an orthonormal design

matrix X (or orthonormal inputs). An orthonormal matrix refers to an orthogonal matrix, with
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orthogonal columns of length one, considering the columns are expressed as vectors. In this case,

the relationship between β̂ridge and β̂OLS becomes

β̂ridge =
β̂OLS

1+λ
, (18)

which shows that the ridge coefficients are derived from a scaled version of the OLS coefficients

[3]. This relationship further illustrates the main characteristic of ridge regression, which is

shrinkage. Ridge regression always shrinks the coefficients towards zero, reducing the variance

but introducing additional bias.

We now turn to the relationship between ridge regression and principal components anal-

ysis (PCA). PCA refers to a method of explaining the variance-covariance structure of linear

combinations of variables [9]. We use the Singular Value Decomposition (SVD) of the matrix X,

which is an (N× p) matrix, to gain more insight into how ridge regression performs shrinkage.

We express matrix X as

X =UDV T , (19)

where

• U is an (n× p) orthogonal matrix

• V is an (n× p) orthogonal matrix

• D is a diagonal matrix with dimension (p× p) and diagonal elements dj, such that D =

diag(dj).

The values d1 ≥ d2 ≥ . . . ≥ dp ≥ 0 are the singular values of the matrix X, which means that X
becomes a singular matrix if one or a few of the values of d j are zero. By replacing the expression

of X from Equation (19) into Equation (13), and after some mathematical arrangements, the

β̂ridge coefficients are given from the following equation

X β̂ridge =
N

∑
j=1

u j
d2

j

d2
j +λ

uT
j y, (20)

where u j are the columns of matrix U. This expression displays the relation between ridge

regression and principal component analysis (PCA). SVD serves as a way to express the principal

components of the matrix X, and these are in fact the columns of matrix V. The main idea behind

PCR is that the largest principal component is the one with the largest variance of the data and

the smallest principle component is the one with the smallest variance [3]. Ridge regression

calculates the coordinates of y subject to the orthonormal matrix U, and then shrinks them by the

factor
d2

j

d2
j+λ

. As λ ≥ 0, the term
d2

j

d2
j+λ
≤ 1. This shows that ridge regression shrinks the principal

components which correspond to d2
j = λ j. More exactly, ridge regression shrinks the low-variance

directions more and keeps all principle components directions unchanged [9].

4 Lasso

Lasso, or "Least Absolute Shrinkage and Selection Operator", is another regularization method

with two additional features to ridge regression. Unlike ridge regression, it shrinks some
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coefficients exactly to zero. This property is known as sparsity. In addition, lasso shrinks some

specific coefficients. Lasso has the property of selecting variables from a large set, property known

as variable selection. Therefore, lasso performs regularization and variable selection [7].

4.1 Mathematical Formulation

In this section we discuss several mathematical formulations for the lasso. The lasso problem can

be written in the Lagrangian form as

β̂lasso = argmin
β

{
N

∑
j=1

[yi− (β̂0 +
N

∑
j=1

β̂ jx j)]
2 +λ

N

∑
j=1
|β j|

}
(21)

= argmin
β

(RSS+λ

N

∑
j=1
|β j|), (22)

where, as before, λ represents the shrinkage parameter. The term ∑
N
j=1 |β j| is called the shrinkage

penalty, and is given in fact by the l1 norm of the vector β , defined as ||β ||1 = ∑ |β j|. Therefore,

we call it an L1 penalty. Thus, the main difference between ridge regression and lasso is that

lasso uses an L1 penalty unlike ridge regression which uses an L2 penalty. The difference between

an L1 penalty and L2 penalty is that the L1 penalty has the effect of shrinking some coefficients

exactly to zero [9].

As in the case of ridge regression, the predictors are standardized and the intercept is left

out of the model, being estimated as β0 = y. We express the lasso estimate solution as an L1

optimization problem

β̂lasso = argmin
β

N

∑
j=1

[yi− (β̂0 +
N

∑
j=1

β̂ jx j)]
2 (23)

subject to
N

∑
j=1
|β j|< t, (24)

where t > 0 is a shrinkage factor. Between the parameter λ and t there is a one-to-one correspon-

dence, more exactly t shows the amount of shrinkage that is applied to the parameters. This is in

fact a quadratic programming problem, with several algorithms available for solving it [7], like

for example the least angle regression (LAR) algorithm.

In order to gain more insight into the properties of the lasso estimates, we look at the matrix

algebra formulation. In this case, lasso coefficients are the solutions to an L1 penalized problem

β̂lasso = argmin
β

1/2||y−Xβ ||2 +λ ||β ||1, (25)

which always provides a unique solution that exists when the matrix XT X has a full rank. As

opposed to ridge regression, the coefficients β̂lasso have no closed form, because the constraint

given by the L1 penalty is in absolute value, which cannot be differentiated. The solutions for the

lasso problem are nonlinear in yi because the constraint has a non-smooth nature [9].
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4.2 Properties of Lambda

Similar to the ridge regression case, parameter λ (or t) controls the amount of shrinkage or

regularization applied to the lasso coefficients. We denote t0 = ∑
N
j=1 |βOLS|, as the sum of the

absolute value of the OLS estimates. If t > t0, then no shrinkage is performed and the lasso

estimates are just the OLS estimates. If t is chosen such as 0 < t < t0, then shrinkage towards zero

occurs, with some of the estimates being exactly zero. For example, if t = t0/2, shrinkage by an

amount of 50 % occurs in the least squared estimates. Thus, if λ is large enough, or equivalently,

t is small enough, the coefficient estimates are exactly zero, as opposed to ridge regression where

the coefficients shrink but do not reach zero. We refer to this type of solutions as sparse.

In addition, the parameter λ controls the number of variables to be included in the model.

Thus, lasso also performs model selection. Similar to ridge regression, the value of λ affects the

accuracy of the model [9]. Unlike for ridge regression, the degrees of freedom are not easily

defined. The degrees of freedom are often used to estimate the model complexity. For the case of

lasso, the degrees of freedom are an unbiased estimate of the number of nonzero coefficients.

The degrees of freedom are usually used for model selection criteria (such as AIC, BIC) to provide

an optimal lasso fit [11].

4.3 Shrinkage: Soft Thresholding

The lasso performs a type of shrinkage called soft-thresholding. For this, we consider the

orthonormal design matrix X of n× p, and assume that XT X = I (orthogonal case). Like in the

case of ridge regression, we express a relation between the lasso estimate and the OLS estimate

β̂lasso = sign β̂OLS(β̂OLS− γ)+, (26)

where γ is a constant determined from the equation ∑
N
j=1 |β̂OLS|= t [9] and we use the + sign to

denote the positive part of Equation (26). This type of estimator is known as a "soft-threshold"

estimator. Soft-thresholding means that the coefficients less than γ are shrunk to zero and

coefficients larger than γ are shrunk by the amount of γ. This shows that lasso performs a

continuous variable selection[9].

5 Comparison between Ridge and Lasso

The previous chapters discussed how ridge and lasso work from a mathematical point of view

and how each method shrinks the coefficients. This chapter emphasizes some similarities and

differences between the two methods, in order to differentiate the nature of the shrinkage

performed in both methods.

5.1 Geometrical Interpretation

We now compare the shrinkage methods by looking at the geometry of ridge and lasso. Figure 2,

adapted from [1], displays the estimation problem for both ridge and lasso, when there are

only two predictors. The figure displays the constraint regions from Equation (14) respectively

Equation (23) and the elliptical contours centered at the OLS estimate represent regions where the
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RSS is constant. Both regression methods find the point where the elliptical contour intersects the

constraint region. Ridge regression has a circle shaped constraint region defined by β 2
1 +β 2

2 ≤ t,

while lasso has a diamond shaped constraint region given by |β1|+ |β2| ≤ t. In the case of lasso, if

the contour intersects the diamond at a corner, then one of the coefficients β j is equal to 0. In

contrast, for ridge regression, there is no intersection between the contour and the constraint

at the axis, which shows that the ridge coefficients will not be exactly equal to zero [5]. This

illustrates in a graphical manner the sparsity property of the lasso.

Lasso 
Estimate

OLS Estimate OLS Estimate

Ridge 
Estimate

Figure 2: Lasso and Ridge Geometrical Interpretation: Contours of the Errors, represented
by elliptical contours and Constraint Functions for ridge (β 2

1 +β 2
2 ≤ t) and lasso (|β1|+ |β2| ≤

t).

5.2 Bayesian Interpretation

Another way to look at the sparsity property of the lasso is by defining both the ridge and lasso

estimates as Bayesian estimates. We formulate both ridge and lasso as Bayes estimates with

different prior distributions [3]. First, we consider a linear regression model

yi =
N

∑
j=1

Xi jβ j + εi, (27)

where εi are the errors, which are independent and drawn from a normal distribution, yi is the

dependent variable, Xi j represent the indenpendent variables and β j the regression coefficients.

We derive the ridge and lasso estimates from the linear regression model, with an additional

assumption, that there is a prior distribution for β j [3]. For ridge regression, the prior distribution

of β j and of y are

P(βridge) = N(0,τ), (28)

P(y) = N(xT
β ,σ2) (29)

where σ2 is the variance and both σ and τ are known before. The relation between λ and τ is

λ = σ2/τ2. If we multiply this distribution by a likelihood function, then the resulting distribution
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is called the "posterior distribution". We assume that βridge have a prior Gaussian distribution with

zero mean; in addition, λ is a function of the standard deviation. Then, the ridge coefficients are

the mean and the mode of the posterior distribution since for the Gaussian distribution the mode

and mean coincide [1].

For the lasso case, we consider a double exponential (or Laplacian) prior distribution which has

the form

p(βlasso) =
1
2

τ(exp(−|β j|/τ), (30)

where τ = 1/λ , or, equivalently p(βlasso) = λ/2(exp(−λ |β j|) [6]. Hence, the lasso estimates are

proportional to the log density of the double exponential distribution. We derive the lasso

estimate as the posterior mode with an independent double-exponential prior. However, this is

not the posterior mean as in the ridge regression case [7]. The shape of the Laplacian distribution

of the lasso explains the sparsity property of lasso. the Laplacian distribution has a peak point,

which indicates that some of the coefficients shrink exactly to zero [3], as opposed to the Gaussian

distribution which has a bell-shaped distribution.

We conclude this section by a generalized form of both ridge and lasso estimates in the Bayesian

interpretation, considering the criterion

β̃ = argmin
β

{
N

∑
i=1

(yi−β0−
p

∑
j=1

β jxi j)
2 +λ

p

∑
j=1
|β j|q

}
, (31)

The term |β j|q represents the prior distribution and the quantity ∑
p
j=1 |β j|q is the contour of the

prior distribution of the parameters, also called the Lq norm. The case of q = 1 corresponds to

the lasso, with the Laplacian distribution and q = 2 corresponds to ridge regression [5]. Figure 3

displays the contours of the shrinkage term (or regularization term).

Figure 3: Contours of the Penalization Term for Lasso (left) and Ridge (right) (adapted
from [5]).

5.3 Discussion

In this section, we briefly present the advantages and disadvantages of both methods. A compara-

tive overview of the two methods can be observed in Table 1.

Both ridge and lasso shrink the OLS estimates by a certain amount, by penalizing the Residual

Sum of Squares (RSS). Lasso measures the shrinkage by ∑
N
j=1 |β j|, while ridge by ∑

N
j=1(β j)

2.



5 Comparison between Ridge and Lasso 12

Criteria Lasso Ridge Regression
Shrinkage Amount ∑

N
j=1 |β j| ∑

N
j=1(β j)

2

Shrinkage Type Proportional Soft-thresholding
Orthogonal design Equation (18) Equation (26)
Number of variables Controlled by λ All variables
Performance Few predictors, high coefficients Many predictors, coefficients same size
Advantages More interpretable Good accuracy
Limitations Large no of predictors, no group selection Model not parsimonious

Table 1: Comparison between ridge regression and lasso.

Thus, the two methods use different kinds of penalties applied to the OLS equation. Ridge

performs shrinkage in a proportional manner, while lasso applies a type of shrinkage called

soft thresholding, which shrinks coefficients with a fixed quantity. In case of orthogonal design,

ridge and lasso estimates are simple functions of the OLS estimates, given by Equation (18),

respectively Equation (26). Figure 4 depicts this relationship graphically. It displays the OLS,

OLS 
Ridge
Lasso

Model
 Estimate

Figure 4: Ridge and Lasso Estimates in the Orthonormal Case (adapted from [5]).

ridge and lasso estimates plotted against the OLS estimates and the respective model estimates.

We can see that both the ridge and lasso estimates are functions of the OLS estimates.

For lasso, parameter λ controls how many variables to include in the model, while ridge includes

all the predictors in the model, thus not resulting in a parsimonious model (as small as possible).

Both methods outperform OLS because both achieve a reduction in variance at the cost of an

increase in bias. Lasso coefficients estimates are more interpretable, as a consequence of the

variable selection feature. However, in terms of prediction error (MSE) the two methods are

not comparable and we cannot determine which method performs better. According to [5],

lasso performs well in the setting when very few of the predictors have high coefficients and the

rest very low coefficients. Ridge regression performs well when there are many predictors to

explain the output, and each of the coefficients associated with the predictors have approximately

the same size. The choice of these methods depends on the particular data set at hand [3].

Nevertheless, the lasso method is more popular due to its variable selection property.

However, lasso exhibits certain limitations. In the case when the number of predictors is much

higher than the number of observations, lasso does not perform well. Some of the problems in
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this situation include the fact that lasso selects at most n variables, and that for the lasso to be

defined we need to specify a bound on the L1 norm. Furthermore, the lasso cannot select a whole

group of variables, in the cases when there are correlations between variables in the group [10].

Lastly, in [7] it is demonstrated that when n > p and the predictors are highly correlated, the

lasso prediction drops, and ridge outperforms it.

Extensions to improve the lasso method have also been developed recently. One of these

techniques is the elastic net [10] [3], which combines ridge regression shrinkage and lasso

variable selection property and has the additional advantage of grouping variables. Other

extensions include BRIDGE regression, which introduces a generalization of lq norms or the

garotte [7].

6 Conclusion

In this paper, we explained the shrinkage methods of ridge regression and lasso. We use these

methods in business forecasting, when we try to predict future data based on past observations.

Shrinkage methods achieve a better prediction accuracy. Both ridge and lasso shrink the value

of the coefficients towards zero. Shrinkage solves some of the problems of OLS estimates, such

as multicollinearity, and helps reduce problems associated with complex models, by avoiding

over-fitting. The methods minimize a penalized residual sum of squares with different penalties.

The amount of shrinkage is controlled in both methods by a parameter usually chosen by cross-

validation. Ridge regression applies an amount of shrinkage which brings the coefficients towards

zero. This reduces the variance, at the cost of increased bias and improves the accuracy of the

model. Lasso soft thresholds the coefficients exactly to zero, which yields sparse models. In

addition, lasso performs variable selection and provides models that are easier to interpret. The

choice of which method to use depends on the data set. However, lasso exhibits low performance,

for example when the number of predictors is much higher than the number of observations or

when choosing grouped variables. There are several algorithms available for computing the lasso

estimates and several extensions to ridge and lasso. Some include elastic net, BRIDGE, or the

garotte. We can conclude that ridge and lasso are two powerful tools used for regression, with

ridge outperforming OLS and the elastic net outperforming lasso.
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